Previous |  Up |  Next

Article

Title: On first order impulsive semilinear functional differential inclusions (English)
Author: Benchohra, M.
Author: Henderson, J.
Author: Ntouyas, Sotiris K.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 39
Issue: 2
Year: 2003
Pages: 129-139
Summary lang: English
.
Category: math
.
Summary: In this paper the Leray-Schauder nonlinear alternative for multivalued maps combined with the semigroup theory is used to investigate the existence of mild solutions for first order impulsive semilinear functional differential inclusions in Banach spaces. (English)
Keyword: initial value problem
Keyword: impulsive functional differential inclusions
Keyword: convex multivalued map
Keyword: fixed point
Keyword: mild solution
MSC: 34A60
MSC: 34G25
MSC: 34K30
MSC: 34K45
MSC: 35K45
MSC: 35R10
idZBL: Zbl 1116.34342
idMR: MR1994569
.
Date available: 2008-06-06T22:41:28Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107859
.
Reference: [1] Agur, Z., Cojocaru, L., Mazur, G., Anderson, R. M. and Danon, Y. L.: Pulse mass measles vaccination across age cohorts.Proc. Nat. Acad. Sci. USA 90 (1993), 11698–11702.
Reference: [2] Banas, J. and Goebel, K.: Measures of Noncompactness in Banach Spaces.Marcel Dekker, New York, 1980. MR 0591679
Reference: [3] Corduneanu, C.: Integral Equations and Applications.Cambridge Univ. Press, New York, 1990. Zbl 1156.45001, MR 1109491
Reference: [4] Deimling, K.: Multivalued Differential Equations.De Gruyter, Berlin, 1992. Zbl 0820.34009, MR 1189795
Reference: [5] Dugundji, J. and Granas, A.: Fixed Point Theory.Monografie Mat. PWN, Warsaw, 1982. MR 0660439
Reference: [6] Erbe, L., Freedman, H. I., Liu, X. Z. and Wu, J. H.: Comparison principles for impulsive parabolic equations with applications to models of singles species growth.J. Austral. Math. Soc. Ser. B 32 (1991), 382–400. MR 1097111
Reference: [7] Goldbeter, A., Li, Y. X. and Dupont, G.: Pulsatile signalling in intercellular communication: Experimental and theoretical aspects.Mathematics applied to Biology and Medicine, Werz. Pub. Winnipeg, Canada (1993), 429–439.
Reference: [8] Hu, Sh. and Papageorgiou, N.: Handbook of Multivalued Analysis, Volume I: Theory.Kluwer, Dordrecht, Boston, London, 1997. MR 1485775
Reference: [9] Kirane, M. and Rogovchenko, Y. V.: Comparison results for systems of impulsive parabolic equations with applications to population dynamics.Nonlinear Anal. 28 (1997), 263–276. MR 1418135
Reference: [10] Lakshmikantham, V., Bainov, D. D. and Simeonov, P. S.: Theory of Impulsive Differential Equations.World Scientific, Singapore, 1989. MR 1082551
Reference: [11] Lasota, A. and Opial, Z.: An application of the Kakutani-Ky-Fan theorem in the theory of ordinary differential equations.Bull. Polish Acad. Sci., Ser. Sci. Math. Astronom. Phys. 13 (1965), 781–786. MR 0196178
Reference: [12] Liu, X., Sivaloganathan, S. and Zhang, S.: Monotone iterative techniques for time-dependent problems with applications.J. Math. Anal. Appl. 237 (1999), 1–18. MR 1708157
Reference: [13] Liu, X. and Zhang, S.: A cell population model described by impulsive PDEs-Existence and numerical approximation.Comput. Math. Appl. 36 (8) (1998), 1–11. MR 1653819
Reference: [14] Martelli, M.: A Rothe’s type theorem for non compact acyclic-valued maps.Boll. Un. Mat. Ital. 11 (Suppl. Fasc.) (1975), 70–76. Zbl 0314.47035, MR 0394752
Reference: [15] Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations.Springer-Verlag, New York, 1983. Zbl 0516.47023, MR 0710486
Reference: [16] Samoilenko, A. M. and Perestyuk, N. A.: Impulsive Differential Equations.World Scientific, Singapore, 1995. MR 1355787
Reference: [17] Yosida, K.: Functional Analysis.$6^{\text{th}}$ edn. Springer-Verlag, Berlin, 1980. Zbl 0830.46001, MR 0617913
.

Files

Files Size Format View
ArchMathRetro_039-2003-2_4.pdf 230.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo