Previous |  Up |  Next

Article

Title: How to characterize commutativity equalities for Drazin inverses of matrices (English)
Author: Tian, Yongge
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 39
Issue: 3
Year: 2003
Pages: 191-199
Summary lang: English
.
Category: math
.
Summary: Necessary and sufficient conditions are presented for the commutativity equalities $A^*A^D = A^DA^*$, $A^{\dag }A^D = A^DA^{\dag }$, $A^{\dag }AA^D = A^DAA^{\dag }$, $AA^DA^* = A^*A^DA$ and so on to hold by using rank equalities of matrices. Some related topics are also examined. (English)
Keyword: commutativity
Keyword: Drazin inverse
Keyword: Moore-Penrose inverse
Keyword: rank equality
Keyword: matrix expression
MSC: 15A03
MSC: 15A09
MSC: 15A27
idZBL: Zbl 1122.15300
idMR: MR2010720
.
Date available: 2008-06-06T22:41:47Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107866
.
Reference: [1] Ben-Israel A., Greville T. N. E.: Generalized Inverses: Theory and Applications.Corrected reprint of the 1974 original, Robert E. Krieger Publishing Co., Inc., Huntington, New York, 1980. Zbl 0305.15001, MR 0587113
Reference: [2] Campbell S. L., Meyer C. D.: EP operators and generalized inverses.Canad. Math. Bull. 18 (1975), 327–333. Zbl 0317.15004, MR 0405136
Reference: [3] Campbell S. L., Meyer C. D.: Generalized Inverses of Linear Transformations.Corrected reprint of the 1979 original, Dover Publications, Inc., New York, 1991. Zbl 0417.15002, MR 1105324
Reference: [4] Castro N., Koliha J. J.: Perturbation of the Drazin inverse for closed linear operators.Integral Equations Operator Theory 36 (2000), 92–106. Zbl 1009.47002, MR 1736919
Reference: [5] Castro N., Koliha J. J., Wei Y.: Perturbation of the Drazin inverse for matrices with equal eigenprojections at zero.Linear Algebra Appl. 312 (2000), 181–189. Zbl 0963.15002, MR 1759331
Reference: [6] Hartwig R. E., Spindelböck K.: Partial isometries, contractions and EP matrices.Linear and Multilinear Algebra 13 (1983), 295–310. Zbl 0575.15008, MR 0704779
Reference: [7] Hartwig R. E., Spindelböck K.: Matrices for which $ A^*$ and $ A^{\dagger }$ can commute.Linear and Multilinear Algebra 14 (1984), 241–256.
Reference: [8] Koliha J. J.: Elements of $C^*$-algebras commuting with their Moore-Penrose inverse.Studia Math. 139 (2000), 81–90. Zbl 0963.46037, MR 1763046
Reference: [9] Marsaglia G., Styan G. P. H.: Equalities and inequalities for ranks of matrices.Linear and Multilinear Algebra 2 (1974), 269–292. Zbl 0297.15003, MR 0384840
Reference: [10] Rao C. R., Mitra S. K.: Generalized Inverse of Matrices and Its Applications.Wiley, New York, 1971. Zbl 0236.15005, MR 0338013
Reference: [11] Tian Y.: How to characterize equalities for the Moore-Penrose inverse of a matrix.Kyungpook Math. J. 41 (2001), 1–15. Zbl 0987.15001, MR 1847431
Reference: [12] Wong E. T.: Does the generalized inverse of $A$ commute with $A$?.Math. Mag. 59 (1986), 230–232. Zbl 0611.15007, MR 1572626
.

Files

Files Size Format View
ArchMathRetro_039-2003-3_5.pdf 196.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo