Title:
|
How to characterize commutativity equalities for Drazin inverses of matrices (English) |
Author:
|
Tian, Yongge |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
39 |
Issue:
|
3 |
Year:
|
2003 |
Pages:
|
191-199 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Necessary and sufficient conditions are presented for the commutativity equalities $A^*A^D = A^DA^*$, $A^{\dag }A^D = A^DA^{\dag }$, $A^{\dag }AA^D = A^DAA^{\dag }$, $AA^DA^* = A^*A^DA$ and so on to hold by using rank equalities of matrices. Some related topics are also examined. (English) |
Keyword:
|
commutativity |
Keyword:
|
Drazin inverse |
Keyword:
|
Moore-Penrose inverse |
Keyword:
|
rank equality |
Keyword:
|
matrix expression |
MSC:
|
15A03 |
MSC:
|
15A09 |
MSC:
|
15A27 |
idZBL:
|
Zbl 1122.15300 |
idMR:
|
MR2010720 |
. |
Date available:
|
2008-06-06T22:41:47Z |
Last updated:
|
2012-05-10 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/107866 |
. |
Reference:
|
[1] Ben-Israel A., Greville T. N. E.: Generalized Inverses: Theory and Applications.Corrected reprint of the 1974 original, Robert E. Krieger Publishing Co., Inc., Huntington, New York, 1980. Zbl 0305.15001, MR 0587113 |
Reference:
|
[2] Campbell S. L., Meyer C. D.: EP operators and generalized inverses.Canad. Math. Bull. 18 (1975), 327–333. Zbl 0317.15004, MR 0405136 |
Reference:
|
[3] Campbell S. L., Meyer C. D.: Generalized Inverses of Linear Transformations.Corrected reprint of the 1979 original, Dover Publications, Inc., New York, 1991. Zbl 0417.15002, MR 1105324 |
Reference:
|
[4] Castro N., Koliha J. J.: Perturbation of the Drazin inverse for closed linear operators.Integral Equations Operator Theory 36 (2000), 92–106. Zbl 1009.47002, MR 1736919 |
Reference:
|
[5] Castro N., Koliha J. J., Wei Y.: Perturbation of the Drazin inverse for matrices with equal eigenprojections at zero.Linear Algebra Appl. 312 (2000), 181–189. Zbl 0963.15002, MR 1759331 |
Reference:
|
[6] Hartwig R. E., Spindelböck K.: Partial isometries, contractions and EP matrices.Linear and Multilinear Algebra 13 (1983), 295–310. Zbl 0575.15008, MR 0704779 |
Reference:
|
[7] Hartwig R. E., Spindelböck K.: Matrices for which $ A^*$ and $ A^{\dagger }$ can commute.Linear and Multilinear Algebra 14 (1984), 241–256. |
Reference:
|
[8] Koliha J. J.: Elements of $C^*$-algebras commuting with their Moore-Penrose inverse.Studia Math. 139 (2000), 81–90. Zbl 0963.46037, MR 1763046 |
Reference:
|
[9] Marsaglia G., Styan G. P. H.: Equalities and inequalities for ranks of matrices.Linear and Multilinear Algebra 2 (1974), 269–292. Zbl 0297.15003, MR 0384840 |
Reference:
|
[10] Rao C. R., Mitra S. K.: Generalized Inverse of Matrices and Its Applications.Wiley, New York, 1971. Zbl 0236.15005, MR 0338013 |
Reference:
|
[11] Tian Y.: How to characterize equalities for the Moore-Penrose inverse of a matrix.Kyungpook Math. J. 41 (2001), 1–15. Zbl 0987.15001, MR 1847431 |
Reference:
|
[12] Wong E. T.: Does the generalized inverse of $A$ commute with $A$?.Math. Mag. 59 (1986), 230–232. Zbl 0611.15007, MR 1572626 |
. |