Previous |  Up |  Next

Article

Title: Regular half-linear second order differential equations (English)
Author: Došlý, Ondřej
Author: Řezníčková, Jana
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 39
Issue: 3
Year: 2003
Pages: 233-245
Summary lang: English
.
Category: math
.
Summary: We introduce the concept of the regular (nonoscillatory) half-linear second order differential equation \[ \left(r(t)\Phi (x^{\prime })\right)^{\prime }+c(t)\Phi (x)=0\,,\quad \Phi (x):=|x|^{p-2}x\,,\quad p>1 \qquad \mathrm {{(*)}}\] and we show that if (*) is regular, a solution $x$ of this equation such that $x^{\prime }(t)\ne 0$ for large $t$ is principal if and only if \[ \int ^\infty \frac{dt}{r(t)x^2(t)|x^{\prime }(t)|^{p-2}}=\infty \,. \] Conditions on the functions $r,c$ are given which guarantee that (*) is regular. (English)
Keyword: regular half-linear equation
Keyword: principal solution
Keyword: Picone’s identity
Keyword: Riccati-type equation
MSC: 34C10
idZBL: Zbl 1119.34029
idMR: MR2010724
.
Date available: 2008-06-06T22:41:58Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107870
.
Reference: [1] Allegretto W., Huang Y. X.: A Picone’s identity for the $p$-Laplacian and applications.Nonlin. Anal. 32 (1998), 819–830. Zbl 0930.35053, MR 1618334
Reference: [2] Cecchi M., Došlá Z., Marini M.: Principal solutions and minimal set for quasilinear differential equations.to appear in Dynam. Syst. Appl. MR 2140874
Reference: [3] Došlý O., Elbert Á.: Integral characterization of the principal solution of half-linear differential equations.Studia Sci. Math. Hungar. 36 (2000), No. 3-4, 455–469. MR 1798750
Reference: [4] Došlý O., Lomtatidze A.: Oscillation and nonoscillation criteria for half-linear second order differential equations.submitted. Zbl 1123.34028
Reference: [5] Elbert Á.: A half-linear second order differential equation.Colloq. Math. Soc. János Bolyai 30 (1979), 158–180.
Reference: [6] Elbert Á.: Asymptotic behaviour of autonomous half-linear differential systems on the plane.Studia Sci. Math. Hungar. 19 (1984), 447–464. Zbl 0629.34066, MR 0874513
Reference: [7] Elbert Á.: The Wronskian and the half-linear differential equations.Studia Sci. Math. Hungar. 15 (1980), 101–105. Zbl 0522.34034, MR 0681431
Reference: [8] Elbert Á., Kusano T.: Principal solutions of nonoscillatory half-linear differential equations.Advances in Math. Sci. Appl. 18 (1998), 745–759. MR 1657164
Reference: [9] Elbert Á., Schneider A.: Perturbation of the half-linear Euler differential equations.Result. Math. 37 (2000), 56–83. MR 1742294
Reference: [10] Hartman P.: Ordinary Differential Equations.John Wiley, New York, 1964. Zbl 0125.32102, MR 0171038
Reference: [11] Jaroš J., Kusano T.: A Picone type identity for half-linear differential equations.Acta Math. Univ. Comenianea 68 (1999), 137–151. MR 1711081
Reference: [12] Leighton W., Morse M.: Singular quadratic functionals.Trans. Amer. Math. Soc. 40 (1936) 252–286. Zbl 0015.02701, MR 1501873
Reference: [13] Lorch L., Newman J. D.: A supplement to the Sturm separation theorem, with applications.Amer. Math. Monthly 72 (1965), 359–366, 390. Zbl 0135.29702, MR 0176147
Reference: [14] Mirzov J. D.: On some analogs of Sturm’s and Kneser’s theorems for nonlinear systems.J. Math. Anal. Appl. 53 (1976), 418–426. Zbl 0327.34027, MR 0402184
Reference: [15] Mirzov J. D.: Principal and nonprincipal solutions of a nonoscillatory system.Tbiliss. Gos. Univ. Inst. Prikl. Mat. Trudy 31 (1988), 100–117. MR 1001343
.

Files

Files Size Format View
ArchMathRetro_039-2003-3_9.pdf 254.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo