Previous |  Up |  Next

Article

Title: A note on bidifferential calculi and bihamiltonian systems (English)
Author: Guha, Partha
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 40
Issue: 1
Year: 2004
Pages: 17-22
Summary lang: English
.
Category: math
.
Summary: In this note we discuss the geometrical relationship between bi-Hamiltonian systems and bi-differential calculi, introduced by Dimakis and Möller–Hoissen. (English)
Keyword: Frölicher-Nijenhuis
Keyword: Lenard scheme
Keyword: bidifferential calculi
MSC: 37J35
MSC: 53D17
idZBL: Zbl 1110.37043
idMR: MR2054868
.
Date available: 2008-06-06T22:42:43Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107886
.
Reference: [1] Crampin M., Sarlet W., Thompson G.: Bi-Differential Calculi and bi-Hamiltonian systems.J. Phys. A 33 (2000), 177–180. Zbl 0989.37063, MR 1767035
Reference: [2] Dimakis A., Müller–Hoissen F.: Bi-differential calculi and integrable models.J. Phys. A 33 (2000), 957-974. Zbl 1043.37508, MR 1748429
Reference: [3] Dimakis A., Müller-Hoissen F.: Bicomplex formulation and Moyal deformation of 2+1-dimensional Fordy-Kulish systems.nlin.SI/0008016, and the references therein. Zbl 1103.37309
Reference: [4] Magri F.: A simple model of the integrable Hamiltonian equation.J. Math. Phys. 19, No. 5 (1978), 1156–1162. MR 0488516
Reference: [5] Magri F.: Eight lectures on integrable systems.Integrability of nonlinear systems, Proceedings Pondicherry, 1996, Edited by Y. Kosmann-Schwarzbach et. al., Lecture Notes in Phys. 495, Springer, Berlin, 1997, 256–296,. MR 1636296
Reference: [6] Michor P.: A generalization of Hamiltonian mechanics.J. Geom. Phys. 2, No. 2 (1985), 67–82. Zbl 0587.58004, MR 0845468
.

Files

Files Size Format View
ArchMathRetro_040-2004-1_2.pdf 183.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo