Previous |  Up |  Next

Article

Title: The ring of arithmetical functions with unitary convolution: Divisorial and topological properties (English)
Author: Snellman, Jan
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 40
Issue: 2
Year: 2004
Pages: 161-179
Summary lang: English
.
Category: math
.
Summary: We study $(\mathcal {A},+,\oplus )$, the ring of arithmetical functions with unitary convolution, giving an isomorphism between $(\mathcal {A},+,\oplus )$ and a generalized power series ring on infinitely many variables, similar to the isomorphism of Cashwell-Everett [NumThe] between the ring $(\mathcal {A},+,\cdot )$ of arithmetical functions with Dirichlet convolution and the power series ring $ [\![x_1,x_2,x_3,\dots ]\!]$ on countably many variables. We topologize it with respect to a natural norm, and show that all ideals are quasi-finite. Some elementary results on factorization into atoms are obtained. We prove the existence of an abundance of non-associate regular non-units. (English)
Keyword: unitary convolution
Keyword: Schauder Basis
Keyword: factorization into atoms
Keyword: zero divisors
MSC: 11A25
MSC: 13F25
MSC: 13J05
idZBL: Zbl 1122.11004
idMR: MR2068688
.
Date available: 2008-06-06T22:43:18Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107898
.
Reference: [1] Anderson D. D., Valdes-Leon S.: Factorization in commutative rings with zero divisors.Rocky Mountain J. Math. 26(2) (1996), 439–480. Zbl 0865.13001, MR 1406490
Reference: [2] Anderson D. D., Valdes-Leon S.: Factorization in commutative rings with zero divisors. II.In Factorization in integral domains (Iowa City, IA, 1996), Dekker, New York 1997, 197–219. MR 1460773
Reference: [3] Bosch S., Güntzer U., Remmert R.: Non-Archimedean analysis.Springer-Verlag, Berlin, 1984. A systematic approach to rigid analytic geometry. Zbl 0539.14017, MR 0746961
Reference: [4] Cashwell E. D., Everett C. J.: The ring of number-theorethic functions.Pacific Journal of Mathematics 9 (1959), 975–985. MR 0108510
Reference: [5] Cohen E.: Arithmetical functions associated with the unitary divisors of an integer.Math. Z. Zbl 0094.02601, MR 0112861
Reference: [6] Huckaba, James A.: Commutative rings with zero divisors.Marcel Dekker Inc., New York, 1988. Zbl 0637.13001, MR 0938741
Reference: [7] Narkiewicz W.: On a class of arithmetical convolutions.Colloq. Math. 10 (1963), 81–94. Zbl 0114.26502, MR 0159778
Reference: [8] Schwab, Emil D., Silberberg, Gheorghe: A note on some discrete valuation rings of arithmetical functions.Arch. Math. (Brno) 36 (2000),103–109. Zbl 1058.11007, MR 1761615
Reference: [9] Schwab, Emil D., Silberberg, Gheorghe: The valuated ring of the arithmetical functions as a power series ring.Arch. Math. (Brno) 37(1) (2001), 77–80. Zbl 1090.13016, MR 1822767
Reference: [10] Sivaramakrishnan R.: Classical theory of arithmetic functions.volume 126 of Pure and Applied Mathematics, Marcel Dekker, 1989. Zbl 0657.10001, MR 0980259
Reference: [11] Vaidyanathaswamy R.: The theory of multiplicative arithmetic functions.Trans. Amer. Math. Soc. 33(2) (1931), 579–662. Zbl 0002.12402, MR 1501607
Reference: [12] Wilson, Richard M.: The necessary conditions for $t$-designs are sufficient for something.Util. Math. 4 (1973), 207–215. Zbl 0286.05005, MR 0325415
Reference: [13] Yocom K. L.: Totally multiplicative functions in regular convolution rings.Canad. Math. Bull. 16 (1973), 119–128. Zbl 0259.10002, MR 0325502
.

Files

Files Size Format View
ArchMathRetro_040-2004-2_4.pdf 297.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo