Previous |  Up |  Next

Article

Title: Eventual disconjugacy of $y^{(n)} + \mu p(x) y = 0$ for every $\mu $ (English)
Author: Elias, Uri
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 40
Issue: 2
Year: 2004
Pages: 193-200
Summary lang: English
.
Category: math
.
Summary: The work characterizes when is the equation $ y^{ (n) } + \mu p(x) y = 0 $ eventually disconjugate for every value of $ \mu $ and gives an explicit necessary and sufficient integral criterion for it. For suitable integers $ q $, the eventually disconjugate (and disfocal) equation has 2-dimensional subspaces of solutions $ y $ such that $ y^{ (i) } > 0 $, $ i = 0, \ldots , q-1 $, $ (-1)^{i-q} y^{ (i) } > 0 $, $ i = q, \ldots , n $. We characterize the “smallest” of such solutions and conjecture the shape of the “largest” one. Examples demonstrate that the estimates are sharp. (English)
Keyword: eventual disconjugacy
MSC: 34C10
idZBL: Zbl 1116.34317
idMR: MR2068690
.
Date available: 2008-06-06T22:43:27Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107900
.
Reference: [Ea] Eastham, M. S. P.: The asymptotic solution of linear differential systems.University Press, Oxford, 1989. Zbl 0674.34045, MR 1006434
Reference: [E1] Elias, U.: Oscillation theory of two-term differential equations.Kluwer Academic Publishers, Dordrecht, 1997. Zbl 0878.34022, MR 1445292
Reference: [E2] Elias, U.: Comparison theorems for disfocality and disconjugacy of differential equations.SIAM J. Math. Anal. 15 (1984), 922–931. Zbl 0554.34021, MR 0755852
Reference: [KC] Kiguradze, I. T., and Chanturia, T. A.: Asymptotic properties of solutions of nonautonomous ordinary differential equations.Kluwer Academic Publishers, Dordrecht, 1993. MR 1220223
Reference: [Ki] Kim, W. J.: Asymptotic properties of nonoscillatory solutions of higher order differential equations.Pacific J. Math. 93 (1981), 107–114. Zbl 0488.34046, MR 0621601
Reference: [PSz] Pólya, G., and Szegö, G.: Problems and theorems in analysis.Springer-Verlag, Berlin, 1972.
.

Files

Files Size Format View
ArchMathRetro_040-2004-2_6.pdf 222.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo