Title:
|
The Neumann problem for quasilinear differential equations (English) |
Author:
|
Cardinali, Tiziana |
Author:
|
Papageorgiou, Nikolaos S. |
Author:
|
Servadei, Raffaella |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
40 |
Issue:
|
4 |
Year:
|
2004 |
Pages:
|
321-333 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this note we prove the existence of extremal solutions of the quasilinear Neumann problem $-( \vert x^{^{\prime }}(t) \vert ^{p-2}x^{^{\prime }}(t))^{^{\prime }} = f(t,x(t),x ^{^{\prime }}(t))$, a.e. on $T$, $x^{^{\prime }}(0) = x^{^{\prime }}(b) =0$, $2\le p < \infty $ in the order interval $[\psi ,\varphi ]$, where $\psi $ and $\varphi $ are respectively a lower and an upper solution of the Neumann problem. (English) |
Keyword:
|
upper solution |
Keyword:
|
lower solution |
Keyword:
|
order interval |
Keyword:
|
truncation function |
Keyword:
|
penalty function |
Keyword:
|
pseudomonotone operator |
Keyword:
|
coercive operator |
Keyword:
|
Leray-Schauder principle |
Keyword:
|
maximal solution |
Keyword:
|
minimal solution |
MSC:
|
34B15 |
MSC:
|
35J25 |
MSC:
|
35J60 |
MSC:
|
35J65 |
idZBL:
|
Zbl 1122.35030 |
idMR:
|
MR2129954 |
. |
Date available:
|
2008-06-06T22:44:10Z |
Last updated:
|
2012-05-10 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/107916 |
. |
Reference:
|
[1] Boccardo L., Drábek P., Giachetti D., Kučera M.: Generalization of Fredholm alternative for nonlinear differential operators.Nonlinear Anal. 10 (1986), 1083–1103. MR 0857742 |
Reference:
|
[2] Brézis H.: Analyse functionelle: Théorie et applications.Masson, Paris 1983. MR 0697382 |
Reference:
|
[3] Del Pino M., Elgueta M., Manasevich R.: A homotopic deformation along p of a Leray-Schauder degree result and existence for $(\vert u^{^{\prime }}(t) \vert ^{p-2}u^{^{\prime }}(t))^{^{\prime }} + f(t,u(t)) = 0, u(0)=u(T)=0, p>1)$.J. Differential Equations 80 (1989), 1–13. MR 1003248 |
Reference:
|
[4] Drábek P.: Solvability of boundary value problems with homogeneous ordinary differential operator.Rend. Istit. Mat. Univ. Trieste 18 (1986), 105–125. MR 0928322 |
Reference:
|
[5] Dunford N., Schwartz J. T.: Linear operators. Part I: General theory.Interscience Publishers, New York 1958–1971. MR 1009162 |
Reference:
|
[6] Gao W., Wang J.: A nonlinear second order periodic boundary value problem with Carathéodory functions.Ann. Polon. Math. LXVII. 3 (1995), 283–291. MR 1356797 |
Reference:
|
[7] Gilbarg D., Trudinger N.: Elliptic partial differential equations of second order.Springer-Verlag, Berlin 1983. Zbl 0562.35001, MR 0737190 |
Reference:
|
[8] Dugundji J., Granas A.: Fixed point theory, Vol. I.Monogr. Mat. PWN, Warsaw 1992. |
Reference:
|
[9] Guo Z.: Boundary value problems of a class of quasilinear ordinary differential equations.Differential Integral Equations 6, No. 3 (1993), 705–719. Zbl 0784.34018, MR 1202567 |
Reference:
|
[10] Halidias N., Papageorgiou N. S.: Existence of solutions for nonlinear parabolic problems.Arch. Math. (Brno) 35 (1999), 255–274. Zbl 1046.35054, MR 1725842 |
Reference:
|
[11] Hu S., Papageorgiou N. S.: Handbook of multivalued analysis. Volume I: Theory.Kluwer, Dordrecht, The Netherlands 1997. Zbl 0887.47001, MR 1485775 |
Reference:
|
[12] Marcus M., Mizel V. J.: Absolute continuity on tracks and mapping of Sobolev spaces.Arch. Rational Mech. Anal. 45 (1972), 294–320. MR 0338765 |
Reference:
|
[13] O’Regan D.: Some General existence principles and results for $(\phi (y^{^{\prime }}))= qf(t,y,y^{^{\prime }}), 0<t<1^{*}$.SIAM J. Math. Anal. 24 No. 30 (1993), 648–668. MR 1215430 |
Reference:
|
[14] Pascali D., Sburlan S.: Nonlinear mapping of monotone type.Editura Academiei, Bucuresti, Romania 1978. MR 0531036 |
Reference:
|
[15] Peressini A. L.: Ordered topological vector spaces.Harper & Row, New York, Evanstone, London 1967. Zbl 0169.14801, MR 0227731 |
Reference:
|
[16] Wang J., Jiang D.: A unified approach to some two-point, three-point and four-point boundary value problems with Carathéodory functions.J. Math. Anal. Appl. 211 (1997), 223–232. Zbl 0880.34019, MR 1460168 |
Reference:
|
[17] Zeidler E.: Nonlinear functional analysis and its applications II.Springer-Verlag, New York 1990. Zbl 0684.47029, MR 0816732 |
. |