Title:
|
Existence theory for single and multiple solutions to singular positone discrete Dirichlet boundary value problems to the one-dimension $p$-Laplacian (English) |
Author:
|
Jiang, Daqing |
Author:
|
Zhang, Lili |
Author:
|
O'Regan, Donal |
Author:
|
Agarwal, Ravi P. |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
40 |
Issue:
|
4 |
Year:
|
2004 |
Pages:
|
367-381 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper we establish the existence of single and multiple solutions to the positone discrete Dirichlet boundary value problem \[ \left\lbrace \begin{array}{l} \Delta \big [\phi (\Delta u(t-1))\big ]+ q(t) f(t,u(t))=0\,,\quad t\in \lbrace 1,2,\dots ,T\rbrace \\[3pt] u(0)=u(T+1)=0\,, \end{array} \right. \] where $\phi (s) = |s|^{p-2}s$, $p>1$ and our nonlinear term $f(t,u)$ may be singular at $u=0$. (English) |
Keyword:
|
multiple solutions |
Keyword:
|
singular |
Keyword:
|
existence |
Keyword:
|
discrete boundary value problem |
MSC:
|
34B15 |
MSC:
|
39A11 |
MSC:
|
39A12 |
idZBL:
|
Zbl 1113.39022 |
idMR:
|
MR2129959 |
. |
Date available:
|
2008-06-06T22:44:26Z |
Last updated:
|
2012-05-10 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/107921 |
. |
Reference:
|
[1] Agarwal R. P., O’Regan D.: Singular discrete boundary value problems.Appl. Math. Lett. 12 (1999), 127–131. Zbl 0944.39003, MR 1750610 |
Reference:
|
[2] Agarwal R. P., O’Regan D.: Boundary value problems for discrete equations.Appl. Math. Lett. 10 (1997), 83–89. Zbl 0890.39001, MR 1458158 |
Reference:
|
[3] Agarwal R. P., O’Regan D.: Singular discrete $(n,p)$ boundary value problems.Appl. Math. Lett. 12 (1999), 113–119. Zbl 0970.39006, MR 1751342 |
Reference:
|
[4] Agarwal R. P., O’Regan D.: Nonpositive discrete boundary value problems.Nonlinear Anal. 39 (2000), 207–215. MR 1722094 |
Reference:
|
[5] Agarwal R. P., O’Regan D.: Existence theorem for single and multiple solutions to singular positone boundary value problems.J. Differential Equations, 175 (2001), 393–414. MR 1855974 |
Reference:
|
[6] Agarwal R. P., O’Regan D.: Twin solutions to singular Dirichlet problems.J. Math. Anal. Appl. 240 (1999), 433–445. MR 1731655 |
Reference:
|
[7] Agarwal R. P., O’Regan D.: Twin solutions to singular boundary value problems.Proc. Amer. Math. Soc. 128 (7) ( 2000), 2085–2094. Zbl 0946.34020, MR 1664297 |
Reference:
|
[8] Agarwal R. P., O’Regan D.: Multiplicity results for singular conjugate, focal, and $(N,P)$ problems.J. Differential Equations 170 (2001), 142–156. Zbl 0978.34018, MR 1813103 |
Reference:
|
[9] Deimling K.: Nonlinear functional analysis.Springer Verlag, 1985. Zbl 0559.47040, MR 0787404 |
Reference:
|
[10] Henderson J.: Singular boundary value problems for difference equations.Dynam. Systems Appl. (1992), 271–282. Zbl 0761.39002, MR 1182649 |
Reference:
|
[11] Henderson J.: Singular boundary value problems for higher order difference equations.In Proceedings of the First World Congress on Nonlinear Analysis, (Edited by V. Lakshmikantham), Walter de Gruyter, 1994, 1139–1150. MR 1389147 |
Reference:
|
[12] Jiang D. Q.: Multiple positive solutions to singular boundary value problems for superlinear higher-order ODEs.Comput. Math. Appl. 40 (2000), 249–259. Zbl 0976.34019, MR 1763623 |
Reference:
|
[13] Jiang D. Q., Pang P. Y. H., Agarwal R. P.: Upper and lower solutions method and a superlinear singular discrete boundary value problem.Dynam. Systems Appl., to appear. MR 2370156 |
Reference:
|
[14] O’Regan D.: Existence Theory for Nonlinear Ordinary Differential Equations.Kluwer Academic, Dordrecht, 1997. Zbl 1077.34505, MR 1449397 |
. |