Previous |  Up |  Next

Article

Title: Existence theory for single and multiple solutions to singular positone discrete Dirichlet boundary value problems to the one-dimension $p$-Laplacian (English)
Author: Jiang, Daqing
Author: Zhang, Lili
Author: O'Regan, Donal
Author: Agarwal, Ravi P.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 40
Issue: 4
Year: 2004
Pages: 367-381
Summary lang: English
.
Category: math
.
Summary: In this paper we establish the existence of single and multiple solutions to the positone discrete Dirichlet boundary value problem \[ \left\lbrace \begin{array}{l} \Delta \big [\phi (\Delta u(t-1))\big ]+ q(t) f(t,u(t))=0\,,\quad t\in \lbrace 1,2,\dots ,T\rbrace \\[3pt] u(0)=u(T+1)=0\,, \end{array} \right. \] where $\phi (s) = |s|^{p-2}s$, $p>1$ and our nonlinear term $f(t,u)$ may be singular at $u=0$. (English)
Keyword: multiple solutions
Keyword: singular
Keyword: existence
Keyword: discrete boundary value problem
MSC: 34B15
MSC: 39A11
MSC: 39A12
idZBL: Zbl 1113.39022
idMR: MR2129959
.
Date available: 2008-06-06T22:44:26Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107921
.
Reference: [1] Agarwal R. P., O’Regan D.: Singular discrete boundary value problems.Appl. Math. Lett. 12 (1999), 127–131. Zbl 0944.39003, MR 1750610
Reference: [2] Agarwal R. P., O’Regan D.: Boundary value problems for discrete equations.Appl. Math. Lett. 10 (1997), 83–89. Zbl 0890.39001, MR 1458158
Reference: [3] Agarwal R. P., O’Regan D.: Singular discrete $(n,p)$ boundary value problems.Appl. Math. Lett. 12 (1999), 113–119. Zbl 0970.39006, MR 1751342
Reference: [4] Agarwal R. P., O’Regan D.: Nonpositive discrete boundary value problems.Nonlinear Anal. 39 (2000), 207–215. MR 1722094
Reference: [5] Agarwal R. P., O’Regan D.: Existence theorem for single and multiple solutions to singular positone boundary value problems.J. Differential Equations, 175 (2001), 393–414. MR 1855974
Reference: [6] Agarwal R. P., O’Regan D.: Twin solutions to singular Dirichlet problems.J. Math. Anal. Appl. 240 (1999), 433–445. MR 1731655
Reference: [7] Agarwal R. P., O’Regan D.: Twin solutions to singular boundary value problems.Proc. Amer. Math. Soc. 128 (7) ( 2000), 2085–2094. Zbl 0946.34020, MR 1664297
Reference: [8] Agarwal R. P., O’Regan D.: Multiplicity results for singular conjugate, focal, and $(N,P)$ problems.J. Differential Equations 170 (2001), 142–156. Zbl 0978.34018, MR 1813103
Reference: [9] Deimling K.: Nonlinear functional analysis.Springer Verlag, 1985. Zbl 0559.47040, MR 0787404
Reference: [10] Henderson J.: Singular boundary value problems for difference equations.Dynam. Systems Appl. (1992), 271–282. Zbl 0761.39002, MR 1182649
Reference: [11] Henderson J.: Singular boundary value problems for higher order difference equations.In Proceedings of the First World Congress on Nonlinear Analysis, (Edited by V. Lakshmikantham), Walter de Gruyter, 1994, 1139–1150. MR 1389147
Reference: [12] Jiang D. Q.: Multiple positive solutions to singular boundary value problems for superlinear higher-order ODEs.Comput. Math. Appl. 40 (2000), 249–259. Zbl 0976.34019, MR 1763623
Reference: [13] Jiang D. Q., Pang P. Y. H., Agarwal R. P.: Upper and lower solutions method and a superlinear singular discrete boundary value problem.Dynam. Systems Appl., to appear. MR 2370156
Reference: [14] O’Regan D.: Existence Theory for Nonlinear Ordinary Differential Equations.Kluwer Academic, Dordrecht, 1997. Zbl 1077.34505, MR 1449397
.

Files

Files Size Format View
ArchMathRetro_040-2004-4_6.pdf 261.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo