Previous |  Up |  Next

Article

Title: An almost-periodicity criterion for solutions of the oscillatory differential equation $y''=q(t)y$ and its applications (English)
Author: Staněk, Svatoslav
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 41
Issue: 2
Year: 2005
Pages: 229-241
Summary lang: English
.
Category: math
.
Summary: The linear differential equation $(q):y''=q(t)y$ with the uniformly almost-periodic function $q$ is considered. Necessary and sufficient conditions which guarantee that all bounded (on $\mathbb{R}$) solutions of $(q)$ are uniformly almost-periodic functions are presented. The conditions are stated by a phase of $(q)$. Next, a class of equations of the type $(q)$ whose all non-trivial solutions are bounded and not uniformly almost-periodic is given. Finally, uniformly almost-periodic solutions of the non-homogeneous differential equations $y''=q(t)y+f(t)$ are considered. The results are applied to the Appell and Kummer differential equations. (English)
Keyword: linear second-order differential equation
Keyword: Appell equation
Keyword: Kummer equation
Keyword: uniformly almost-periodic solution
Keyword: bounded solution
Keyword: phase
MSC: 34C27
idZBL: Zbl 1117.34043
idMR: MR2164672
.
Date available: 2008-06-06T22:46:02Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107953
.
Reference: [1] Appell P.: Sur les transformations des équations différentielles linéaires.C. R. Acad. Sci. Paris 91 (1880), 211–214.
Reference: [2] Beckenbach E. F., Bellman R.: Inequalities.Springer 1961. Zbl 0186.09606, MR 0158038
Reference: [3] Borůvka O.: Linear differential transformations of the second order.The English Univ. Press, London 1971. MR 0463539
Reference: [4] Borůvka O.: Sur les blocs des équations différentielles $y^{\prime \prime }=q(t)y$ aux coefficients périodiques.Rend. Mat. 8 (1975), 519–532. Zbl 0326.34007, MR 0379945
Reference: [5] Borůvka O.: The theory of global properties of second-order ordinary differential equations.Differentsial’nye Uravneniya, 12 (1976), 1347–1383. (in Russian). MR 0440123
Reference: [6] Corduneanu C.: Almost Periodic Functions.Wiley, New York 1968. Zbl 0175.09101, MR 0481915
Reference: [7] Fink M. A.: Almost periodic differential equations.Springer, New York – Berlin 1974. Zbl 0325.34039, MR 0460799
Reference: [8] Guter R. S., Kudryavtsev L. D., Levitan B. M.: Elements of the theory of functions.Pergamon Press, Oxford 1966. Zbl 0133.30401, MR 0197232
Reference: [9] Greguš M.: Linear differential equations of the third order.North Holland, Reider Co., Dordrecht-Boston-Lancaster 1986.
Reference: [10] Haraux A.: A simple almost-periodicity criterion and applications.J. Differential Equations 66 (1987), 51–61. Zbl 0608.34049, MR 0871570
Reference: [11] Hartman P.: Ordinary differential equations.J. Wiley, New York 1964. Zbl 0125.32102, MR 0171038
Reference: [12] Hu Z. S., Mingarelli A. B.: On a question in the theory of almost periodic differential equations.Proc. Amer. Math. Soc. 127 (1999), 2665–2670. Zbl 0924.34039, MR 1485481
Reference: [13] Levitan B. M.: Almost-periodic functions.G.I.T.-T.L., Moscow 1953 (in Russian). Zbl 1222.42002, MR 0060629
Reference: [14] Lillo J. C.: Approximate similarity and almost periodic matrices.Proc. Amer. Math. Soc. 12 (1961), 400-407. Zbl 0099.29001, MR 0125127
Reference: [15] Markus L., Moore R. A.: Oscillation and disconjugacy for linear differential equations with almost periodic coefficients.Acta mathematica 96 (1956), 99-123. Zbl 0071.08302, MR 0080813
Reference: [16] Mingarelli A. B., Pu P. Q., Zheng L.: A Counter-example in the theory of almost periodic differential equations.Rocky Mountain J. Math. 25 (1995), 437–440. Zbl 0833.34041, MR 1340018
Reference: [17] Rudin W.: Principles of Mathematical Analysis.McGraw-Hill, New York 1964. Zbl 0148.02903, MR 0166310
Reference: [18] Staněk S.: On some properties of solutions of the disconjugate equation $y^{\prime \prime }=q(t)y$ with an almost periodic coefficient $q$.Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math. 25 (1986), 31–56. Zbl 0644.34039, MR 0918368
.

Files

Files Size Format View
ArchMathRetro_041-2005-2_11.pdf 251.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo