| Title:
|
Periodic solutions for a neutral functional differential equation with multiple variable lags (English) |
| Author:
|
Guo, Cheng-Jun |
| Author:
|
Wang, Gen-Qiang |
| Author:
|
Cheng, Sui-Sun |
| Language:
|
English |
| Journal:
|
Archivum Mathematicum |
| ISSN:
|
0044-8753 (print) |
| ISSN:
|
1212-5059 (online) |
| Volume:
|
42 |
| Issue:
|
1 |
| Year:
|
2006 |
| Pages:
|
1-10 |
| Summary lang:
|
English |
| . |
| Category:
|
math |
| . |
| Summary:
|
By means of the Krasnoselskii fixed piont theorem, periodic solutions are found for a neutral type delay differential system of the form \[ x^{\prime }\left( t\right) +cx^{\prime }\left( t-\tau \right) =A\left( t,x(t)\right) x\left( t\right) +f\left( t,x\left( t-r_{1}\left( t\right) \right) ,\dots ,x\left( t-r_{k}\left( t\right) \right) \right) . \] (English) |
| Keyword:
|
neutral differential system |
| Keyword:
|
periodic solutions |
| Keyword:
|
fixed point theorem |
| MSC:
|
34K13 |
| MSC:
|
47H10 |
| MSC:
|
47N20 |
| idZBL:
|
Zbl 1164.34517 |
| idMR:
|
MR2227107 |
| . |
| Date available:
|
2008-06-06T22:46:57Z |
| Last updated:
|
2012-05-10 |
| Stable URL:
|
http://hdl.handle.net/10338.dmlcz/107976 |
| . |
| Reference:
|
[1] Li L. M.: Periodic solution for a class of higher dimensional nonautonomous system.Acta Math. Appl. Sinica 12(3)(1989), 272–280. MR 1033579 |
| Reference:
|
[2] Wang K.: Periodic solutions to a class differential equations with deviating argument.Acta Math. Sinica 37(3)(1994), 409–413. MR 1289267 |
| Reference:
|
[3] Wang Q. Y.: Existence, uniqueness and stability of periodic solutions.Chinese Ann. Mathematics 15A(5)(1994), 537–545. Zbl 0817.34025, MR 1332635 |
| Reference:
|
[4] Tang Y. B.: Periodic solutions of a class of neutral type functional differential equation.Acta Math. Appl. Sinica, 23(3)(2000), 321–328. MR 1797627 |
| Reference:
|
[5] Wang G. Q., Cheng S. S.: A priori bounds for periodic solutions of a delay Rayleigh equation.Appl. Math. Lett. 12(1999), 41–44. Zbl 0980.34068, MR 1749731 |
| Reference:
|
[6] Wang G. Q., Yan J. R.: Existence of periodic solutions for $n$-th order nonlinear delay differential equation.Far East J. Appl. Math. 3(1999), 129–134. |
| Reference:
|
[7] Wang G. Q., Cheng S. S.: A priori bounds for periodic solutions of a delay Rayleigh equation with damping.Tamkang J. Math. 34(3)(2003), 293–298. Zbl 1051.34057, MR 2002244 |
| Reference:
|
[8] Wang G. Q., Yan J. R.: Existence theorem of periodic positive solutions for the Rayleigh equation of retarded type.Portugaliae Math. 57(3)(2000), 153–160. Zbl 0963.34069, MR 1759811 |
| Reference:
|
[9] Wang G. Q., Yan J. R.: Existence of periodic solutions for second order nonlinear neutral delay equations.Acta Math. Sinica 47(2)(2004), 370–384. MR 2074362 |
| Reference:
|
[10] Gaines R. E., Mawhin J. L.: Coincidence degree and nonlinear differential equations.Lecture Notes in Math. 568, Springer, 1977. Zbl 0339.47031, MR 0637067 |
| Reference:
|
[11] Reissig R., Sasone G., Conti R.: Nonlinear equations of higher order.Noordhoff Inter. Pub. Leyden, 1974. |
| Reference:
|
[12] Vidyasagar M.: Nonlinear system analysis.Prentice Hall Inc., 1978. |
| . |