Previous |  Up |  Next

Article

Title: Periodic solutions for a neutral functional differential equation with multiple variable lags (English)
Author: Guo, Cheng-Jun
Author: Wang, Gen-Qiang
Author: Cheng, Sui-Sun
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 42
Issue: 1
Year: 2006
Pages: 1-10
Summary lang: English
.
Category: math
.
Summary: By means of the Krasnoselskii fixed piont theorem, periodic solutions are found for a neutral type delay differential system of the form \[ x^{\prime }\left( t\right) +cx^{\prime }\left( t-\tau \right) =A\left( t,x(t)\right) x\left( t\right) +f\left( t,x\left( t-r_{1}\left( t\right) \right) ,\dots ,x\left( t-r_{k}\left( t\right) \right) \right) . \] (English)
Keyword: neutral differential system
Keyword: periodic solutions
Keyword: fixed point theorem
MSC: 34K13
MSC: 47H10
MSC: 47N20
idZBL: Zbl 1164.34517
idMR: MR2227107
.
Date available: 2008-06-06T22:46:57Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107976
.
Reference: [1] Li L. M.: Periodic solution for a class of higher dimensional nonautonomous system.Acta Math. Appl. Sinica 12(3)(1989), 272–280. MR 1033579
Reference: [2] Wang K.: Periodic solutions to a class differential equations with deviating argument.Acta Math. Sinica 37(3)(1994), 409–413. MR 1289267
Reference: [3] Wang Q. Y.: Existence, uniqueness and stability of periodic solutions.Chinese Ann. Mathematics 15A(5)(1994), 537–545. Zbl 0817.34025, MR 1332635
Reference: [4] Tang Y. B.: Periodic solutions of a class of neutral type functional differential equation.Acta Math. Appl. Sinica, 23(3)(2000), 321–328. MR 1797627
Reference: [5] Wang G. Q., Cheng S. S.: A priori bounds for periodic solutions of a delay Rayleigh equation.Appl. Math. Lett. 12(1999), 41–44. Zbl 0980.34068, MR 1749731
Reference: [6] Wang G. Q., Yan J. R.: Existence of periodic solutions for $n$-th order nonlinear delay differential equation.Far East J. Appl. Math. 3(1999), 129–134.
Reference: [7] Wang G. Q., Cheng S. S.: A priori bounds for periodic solutions of a delay Rayleigh equation with damping.Tamkang J. Math. 34(3)(2003), 293–298. Zbl 1051.34057, MR 2002244
Reference: [8] Wang G. Q., Yan J. R.: Existence theorem of periodic positive solutions for the Rayleigh equation of retarded type.Portugaliae Math. 57(3)(2000), 153–160. Zbl 0963.34069, MR 1759811
Reference: [9] Wang G. Q., Yan J. R.: Existence of periodic solutions for second order nonlinear neutral delay equations.Acta Math. Sinica 47(2)(2004), 370–384. MR 2074362
Reference: [10] Gaines R. E., Mawhin J. L.: Coincidence degree and nonlinear differential equations.Lecture Notes in Math. 568, Springer, 1977. Zbl 0339.47031, MR 0637067
Reference: [11] Reissig R., Sasone G., Conti R.: Nonlinear equations of higher order.Noordhoff Inter. Pub. Leyden, 1974.
Reference: [12] Vidyasagar M.: Nonlinear system analysis.Prentice Hall Inc., 1978.
.

Files

Files Size Format View
ArchMathRetro_042-2006-1_1.pdf 220.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo