Previous |  Up |  Next

Article

Title: Geometric structures on the tangent bundle of the Einstein spacetime (English)
Author: Janyška, Josef
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 42
Issue: 2
Year: 2006
Pages: 195-203
Summary lang: English
.
Category: math
.
Summary: We describe conditions under which a spacetime connection and a scaled Lorentzian metric define natural symplectic and Poisson structures on the tangent bundle of the Einstein spacetime. (English)
Keyword: spacetime
Keyword: spacetime connection
Keyword: Schouten bracket
Keyword: Frölicher–Nijenhuis bracket
Keyword: symplectic structure
Keyword: Poisson structure
MSC: 53B15
MSC: 53B30
MSC: 53D05
MSC: 53D17
idZBL: Zbl 1164.53318
idMR: MR2240357
.
Date available: 2008-06-06T22:47:59Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107996
.
Reference: [1] Janyška J.: Remarks on symplectic and contact 2–forms in relativistic theories.Boll. Un. Mat. Ital. B (7) 9 (1995), 587–616. Zbl 0857.53027, MR 1351076
Reference: [2] Janyška J.: Natural symplectic structures on the tangent bundle of a space–time.The Proceedings of the Winter School Geometry and Topology (Srní, 1995), Rend. Circ. Mat. Palermo (2) Suppl. 43 (1996), 153–162. MR 1463517
Reference: [3] Janyška J., Modugno M.: Classical particle phase space in general relativity.Differential Geometry and Applications, Proc. Conf., Aug. 28 – Sept. 1, 1995, Brno, Czech Republic, Masaryk University, Brno 1996, 573–602. MR 1406377
Reference: [4] Janyška J., Modugno M.: On quantum vector fields in general relativistic quantum mechanics.in: Proc. 3rd Internat. Workshop Differential Geom. Appl., Sibiu (Romania) 1997, General Mathematics 5 (1997), 199–217. Zbl 0956.53054, MR 1723610
Reference: [5] Janyška J.: Natural Poisson and Jacobi structures on the tangent bundle of a pseudo-Riemannian manifold.Contemporary Mathematics 288 (2001), Global Differential Geom.: The Math. Legacy of Alfred Gray, eds. M. Fernándes and J. A. Wolf, 343–347. Zbl 1013.53053, MR 1871030
Reference: [6] Janyška J.: Natural vector fields and 2-vector fields on the tangent bundle of a pseudo-Riemannian manifold.Arch. Math. (Brno) 37 (2001), 143–160. Zbl 1090.58007, MR 1838411
Reference: [7] Krupka D., Janyška J.: Lectures on Differential Invariants.Folia Fac. Sci. Natur. Univ. Masaryk. Brun. Math., 1990. MR 1108622
Reference: [8] Kolář I., Michor P. W., Slovák J.: Natural Operations in Differential Geometry.Springer–Verlag 1993. MR 1202431
Reference: [9] Libermann P., Marle, Ch. M.: Symplectic Geometry and Analytical Mechanics.Reidel Publ., Dordrecht 1987. Zbl 0643.53002, MR 0882548
Reference: [10] Nijenhuis A.: Natural bundles and their general properties.Differential Geom., in honour of K. Yano, Kinokuniya, Tokyo 1972, 317–334. Zbl 0246.53018, MR 0380862
Reference: [11] Vaisman I.: Lectures on the Geometry of Poisson Manifolds.Birkhäuser Verlag 1994. Zbl 0810.53019, MR 1269545
.

Files

Files Size Format View
ArchMathRetro_042-2006-2_11.pdf 214.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo