Previous |  Up |  Next

Article

Title: From Euler-Lagrange equations to canonical nonlinear connections (English)
Author: Neagu, Mircea
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 42
Issue: 3
Year: 2006
Pages: 255-263
Summary lang: English
.
Category: math
.
Summary: The aim of this paper is to construct a canonical nonlinear connection $\Gamma =(M_{(\alpha )\beta }^{(i)}, N_{(\alpha )j}^{(i)})$ on the 1-jet space $J^{1}(T,M)$ from the Euler-Lagrange equations of the quadratic multi-time Lagrangian function \[ L=h^{\alpha \beta }(t)g_{ij}(t,x)x_{\alpha }^{i}x_{\beta }^{j}+U_{(i)}^{(\alpha )}(t,x)x_{\alpha }^{i}+F(t,x)\,. \] (English)
Keyword: 1-jet fibre bundles
Keyword: nonlinear connections
Keyword: quadratic Lagrangian functions
MSC: 53C80
MSC: 70G45
MSC: 70S05
idZBL: Zbl 1164.53327
idMR: MR2260385
.
Date available: 2008-06-06T22:48:22Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/108005
.
Reference: [1] Asanov G. S.: Gauge-Covariant Stationary Curves on Finslerian and Jet Fibrations and Gauge Extension of Lorentz Force.Tensor (N.S.) 50 (1991), 122–137. MR 1164848
Reference: [2] Asanov G. S.: Jet Extension of Finslerian Gauge Approach.Fortschr. Phys. 38(8) (1990), 571–610. Zbl 0744.53035, MR 1076500
Reference: [3] Cordero L. A., Dodson C. T. J., de Léon M.: Differential Geometry of Frame Bundles.Kluwer Academic Publishers, 1989. Zbl 0673.53001, MR 0980716
Reference: [4] Eells J., Lemaire L.: A Report on Harmonic Maps.Bull. London Math. Soc. 10 (1978), 1–68. Zbl 0401.58003, MR 0495450
Reference: [5] Giachetta G., Mangiarotti L., Sardanashvily G.: Covariant Hamiltonian Field Theory.http://xxx.lanl.gov/hep-th/9904062, (1999).
Reference: [6] Gotay M. J., Isenberg J., Marsden J. E.: Momentum Maps and the Hamiltonian Structure of Classical Relativistic Fields.http://xxx.lanl.gov/hep/9801019, (1998).
Reference: [7] Holm D. D., Marsden J. E., Raţiu T. S.: The Euler-Poincaré Equations and Semidirect Products with Applications to Continuum Theories.http://xxx.lanl.gov/chao-dyn/9801015, (1998). Zbl 0951.37020, MR 1627802
Reference: [8] Kamran N., Olver P. J.: Le Probléme d’Equivalence à une Divergence prés dans le Calcul des Variations des Intégrales Multiple.C. R. Acad. Sci. Paris, 308, Série I, (1989), 249–252. MR 1006072
Reference: [9] Michor P. W., Raţiu T. S.: On the Geometry of the Virasoro-Bott Group.Helderman-Verlag, No. 8 (1998), 293–309. Zbl 0945.58005, MR 1650358
Reference: [10] Miron R., Anastasiei M.: The Geometry of Lagrange Spaces: Theory and Applications.Kluwer Academic Publishers, 1994. Zbl 0831.53001, MR 1281613
Reference: [11] Miron R., Kirkovits M. S., Anastasiei M.: A Geometrical Model for Variational Problems of Multiple Integrals.Proc. Conf. Diff. Geom. Appl., June 26-July 3, (1988), Dubrovnik, Yugoslavia. MR 1040070
Reference: [12] Neagu M.: Generalized Metrical Multi-Time Lagrange Geometry of Physical Fields.Forum Math. 15(1) (2003), 63–92. Zbl 1027.53090, MR 1957279
Reference: [13] Neagu M.: Ricci and Bianchi Identities for $h$-Normal $\Gamma $-Linear Connections on $J^{1}(T,M)$.Hindawi Publishing Corporation, Int. J. Math. Math. Sci. 34 (2003), 2177–2192. MR 1991962
Reference: [14] Neagu M.: The Geometry of Relativistic Rheonomic Lagrange Spaces.Proceedings of Workshop on Diff. Geom., Global Analysis, Lie Algebras, No. 5, 142–169, (2001); Editor: Prof. Dr. Grigorios Tsagas, Aristotle University of Thessaloniki, Greece. Zbl 0996.53049, MR 1896912
Reference: [15] Neagu M., Udrişte C., Oană A.: Multi-Time Dependent Sprays and h-Traceless Maps.Balkan J. Geom. Appl. 10(2) (2005), 76–92. MR 2235108
Reference: [16] Olver P. J.: Applications of Lie Groups to Differential Equations.Springer-Verlag, 1986. Zbl 0588.22001, MR 0836734
Reference: [17] Olver P. J.: Canonical Elastic Moduli.J. Elasticity 19, 189–212, (1988). Zbl 0658.73014, MR 0940120
Reference: [18] Saunders D.: The Geometry of Jet Bundles.Cambridge University Press, New-York, London, 1989. Zbl 0665.58002, MR 0989588
Reference: [19] Vondra A.: Symmetries of Connections on Fibered Manifolds.Arch. Math. (Brno) 30 (1994), 97–115. Zbl 0813.35006, MR 1292562
.

Files

Files Size Format View
ArchMathRetro_042-2006-3_8.pdf 226.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo