Previous |  Up |  Next

Article

Title: Clone properties of topological spaces (English)
Author: Trnková, Věra
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 42
Issue: 4
Year: 2006
Pages: 427-440
Summary lang: English
.
Category: math
.
Summary: Clone properties are the properties expressible by the first order sentence of the clone language. The present paper is a contribution to the field of problems asking when distinct sentences of the language determine distinct topological properties. We fully clarify the relations among the rigidity, the fix-point property, the image-determining property and the coconnectedness. (English)
Keyword: finite products
Keyword: clone
Keyword: first order language
Keyword: rigidity
Keyword: fix-point property
Keyword: image-determining property
Keyword: coconnectedness
MSC: 54B10
MSC: 54C05
idZBL: Zbl 1164.54317
idMR: MR2283023
.
Date available: 2008-06-06T22:49:03Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/108018
.
Reference: [1] Adámek J., Herrlich H., Strecker G.: Abstract and Concrete Categories.Wiley–Interscience, New York 1990. MR 1051419
Reference: [2] Brower L. E. J.: On continuous one-to-one transformations of surfaces into themselves.Proc. Kon. Nederl. Akad. Wetensch. 11 (1909), 788–798.
Reference: [3] Cook H.: Continua which admit only the identity mapping onto non-degenerate sub-continua.Fund. Math. 60 (1967), 241–249. MR 0220249
Reference: [4] Engelking R.: General Topology.Państwowe Wydawnictvo Naukowe, Warszawa 1977. Zbl 0373.54002, MR 0500779
Reference: [5] Garcia O. C., Taylor W.: The lattice of interpretability of varieties.Mem. Amer. Math. Soc., No. 305 50 (1984). MR 0749524
Reference: [6] Hall P.: Some word problems.J. London Math. Soc. 33 (1958), 482–496. Zbl 0198.02902, MR 0102540
Reference: [7] Herrlich H.: On the concept of reflections in general topology.Proc. Symp. On extension theory of topological structures, Berlin 1967.
Reference: [8] Herrlich H.: Topologische Reflexionen und Coreflexionen.Lecture Notes in Math. 78 (1968), Springer-Verlag Berlin - Heidelberg - New York. Zbl 0182.25302, MR 0256332
Reference: [9] Kuratowski C.: Topologie I, II.Monografie Matematyczne, Warszaw 1950.
Reference: [10] Lawvere F. W.: Functorial semantics of algebraic theories.Proc. Nat. Acad. Sci. U. S. A. 50 (1963), 869–872. Zbl 0119.25901, MR 0158921
Reference: [11] Lawvere F. W.: Some algebraic problems in context of functorial semantics of algebraic theories.Lecture Notes in Math. 61 (1968), 41–46, Springer-Verlag, Berlin and New York. MR 0231882
Reference: [12] McKenzie R. N., McNulty G. F., Taylor W. F.: Algebras, Lattices, Varieties.Vol. 1, Brooks/Cole, Monterey, California, 1978.
Reference: [13] Pultr A., Trnková V.: Combinatorial, Algebraic and Topological Representations of Groups, Semigroups and Categories.North Holland and Academia, Praha, 1980. MR 0563525
Reference: [14] Sichler J., Trnková V.: Maps between a space and its square.Topology Appl. 142 (2004), 159–179. Zbl 1068.54009, MR 2071300
Reference: [15] Szendrei Á.: Clones in Universal Algebra.Press de l’Université de Montréal, 1986. Zbl 0603.08004, MR 0859550
Reference: [16] Taylor W.: The Clone of a Topological Space.Research and Exposition Math. Vol 13, Helderman Verlag, 1986. Zbl 0615.54013, MR 0879120
Reference: [17] Taylor W.: Abstract Clone Theory.In: Algebras and Order, Proceedings of the NATO Advanced Study Institute, Montréal 1991 (I. G. Rosenberg and G. Sabidussi, eds.), Kluwer Academic Publishers (1993), 507–530. MR 1233798
Reference: [18] Trnková V.: Semirigid spaces.Trans. Amer. Math. Soc. 343 (1994), 305–329. MR 1219734
Reference: [19] Trnková V.: Co-connected spaces.Serdica Math. J. 24 (1998), 25–36. Zbl 0940.54028, MR 1679189
Reference: [20] Trnková V.: Clones, coclones and coconnected spaces.Acta Math. Univ. Commenianae 69 (2000), 241–259. Zbl 1027.54016, MR 1819525
Reference: [21] Trnková V.: Counting cocomponents of a topological space.Applied Categ. Structures 12 (2004), 379–396. Zbl 1067.54004, MR 2094462
.

Files

Files Size Format View
ArchMathRetro_042-2006-4_8.pdf 260.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo