Previous |  Up |  Next

Article

Title: The local equivalence problem in CR geometry (English)
Author: Kolář, Martin
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 42
Issue: 5
Year: 2006
Pages: 253-266
Summary lang: English
.
Category: math
.
Summary: This article is dedicated to the centenary of the local CR equivalence problem, formulated by Henri Poincaré in 1907. The first part gives an account of Poincaré’s heuristic counting arguments, suggesting existence of infinitely many local CR invariants. Then we sketch the beautiful completion of Poincaré’s approach to the problem in the work of Chern and Moser on Levi nondegenerate hypersurfaces. The last part is an overview of recent progress in solving the problem on Levi degenerate manifolds. (English)
MSC: 32V40
idZBL: Zbl 1164.32307
idMR: MR2322412
.
Date available: 2008-06-06T22:49:40Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/108032
.
Reference: [BER] Baouendi M. S., Ebenfelt P., Rothschild L. P.: Convergence and finite determination of formal CR mappings.J. Amer. Math. Soc. 13 (2000), 697–723. Zbl 0958.32033, MR 1775734
Reference: [BER2] Baouendi M. S., Ebenfelt P., Rothschild L. P.: Local geometric properties of real submanifolds in complex space.Bull. Amer. Math. Soc. (N.S.) 37 (3) (2000), 309–336. MR 1754643
Reference: [BB] Barletta E., Bedford E.: Existence of proper mappings from domains in $\mathbb{C}^2$.Indiana Univ. Math. J. 2 (1990), 315–338. MR 1089041
Reference: [BFG] Beals M., Fefferman C., Grossman R.: Strictly pseudoconvex domains in $\mathbb{C}^n$.Bull. Amer. Math. Soc. 8 (1983), 125–322. MR 0684898
Reference: [B] Beloshapka V. K.: On the dimension of the group of automorphisms of an analytic hypersurface.Math. USSR, Izv. 14 (1980), 223–245. Zbl 0456.32015, MR 0534592
Reference: [BE] Beloshapka V. K., Ezhov V. V.: Normal forms and model hypersurfaces in $\mathbb{C}^2$.preprint.
Reference: [C1] Cartan E.: Sur la géométrie pseudo-conforme des hypersurfaces de deux variables complexes, I.Ann. Math. Pura Appl. 11 (1932), 17–90.
Reference: [C2] Cartan E.: Sur la géométrie pseudo-conforme des hypersurfaces de deux variables complexes, II.Ann. Scuola Norm. Sup. Pisa 1 (1932), 333–354. MR 1556687
Reference: [CM] Chern S. S., Moser J.: Real hypersurfaces in complex manifolds.Acta Math. 133 (1974), 219–271. MR 0425155
Reference: [D] D’Angelo J. P.: Orders od contact, real hypersurfaces and applications.Ann. of Math. (2) 115 (1982), 615–637. MR 0657241
Reference: [E] Ebenfelt P.: New invariant tensors in CR structures and a normal form for real hypersurfaces at a generic Levi degeneracy.J. Differential Geom. 50 (1998), 207–247. Zbl 0945.32020, MR 1684982
Reference: [ELZ] Ebenfelt P., Lamel B., Zaitsev D.: Degenerate real hypersurfaces in $\mathbb{C}2$ with few automorphisms.arXiv:math.CV/0605540.
Reference: [EHZ] Ebenfelt P., Huang X., Zaitsev D.: The equivalence problem and rigidity for hypersurfaces embedded into hyperquadrics.Amer. J. Math. 127 (2005), 169–191. MR 2115664
Reference: [F] Fefferman C.: Parabolic invariant theory in complex analysis.Adv. Math. 31 (1979), 131–262. Zbl 0444.32013, MR 0526424
Reference: [IK] Isaev A. V., Krantz S. G.: Domains with non-compact automorphism group: a survey.Adv. Math. 146 (1) (1999), 1–38. Zbl 1040.32019, MR 1706680
Reference: [J] Jacobowitz H.: An introduction to CR structures.Math. Surveys Monogr. 32, AMS 1990. Zbl 0712.32001, MR 1067341
Reference: [Ju] Juhlin R.: .PhD-thesis, UCSD Zbl 1219.32020
Reference: [K] Kohn J. J.: Boundary behaviour of $\bar{\partial }$ on weakly pseudoconvex manifolds of dimension two.J. Differential Geom. 6 (1972), 523–542. MR 0322365
Reference: [Ko1] Kolář M.: Normal forms for hypersurfaces of finite type in $ \mathbb{C}^2$.Math. Res. Lett. 12 (2005), 523–542. MR 2189248
Reference: [Ko2] Kolář M.: Local symmetries of finite type hypersurfaces in $\mathbb{C}^2$.Sci. China A 48 (2006), 1633–1641. MR 2288220
Reference: [Kow] Kowalski R.: A hypersurface in $\mathbb{C}^2$ whose stability group is not determined by 2-jets.Proc. Amer. Math. Soc. 130 (12) (2002), 3679–3686. (electronic) MR 1920048
Reference: [KL] Kruzhilin N. G., Loboda A. V.: Linearization of local automorphisms of pseudoconvex surfaces.Dokl. Akad. Nauk SSSR 271 (1983), 280–282. Zbl 0582.32040, MR 0718188
Reference: [Po] Poincaré H.: Les fonctions analytique de deux variables et la représentation conforme.Rend. Circ. Mat. Palermo 23 (1907), 185–220.
Reference: [S] Segre B.: Intorno al problem di Poincaré della rappresentazione pseudo-conform.Rend. Accad. Lincei 13 (1931), 676–683.
Reference: [St] Stanton N.: A normal form for rigid hypersurfaces in $\mathbb{C}^2$.Amer. J. Math. 113 (1991), 877–910. MR 1129296
Reference: [V] Vitushkin A. G.: Real analytic hypersurfaces in complex manifolds.Russ. Math. Surv. 40 (1985), 1–35. Zbl 0588.32025, MR 0786085
Reference: [W] Webster S. M.: On the Moser normal form at a non-umbilic point.Math. Ann. 233 (1978), 97–102. Zbl 0358.32013, MR 0486511
Reference: [We] Wells R. O., Jr.: The Cauchy-Riemann equations and differential geometry.Bull. Amer. Math. Soc. (N.S.) 6 (2) (1982), 187–199. Zbl 0496.32012, MR 0640945
Reference: [Wo] Wong P.: A construction of normal forms for weakly pseudoconvex CR manifolds in $\mathbb{C}^2$.Invent. Math. 69 (1982), 311–329. MR 0674409
Reference: [Z] Zaitsev D.: Unique determination of local CR-maps by their jets: A survey.Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Suppl. 13 (2002), 295–305. Zbl 1098.32018, MR 1984108
.

Files

Files Size Format View
ArchMathRetro_042-2006-5_13.pdf 250.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo