Title:
|
On holomorphically projective mappings from equiaffine generally recurrent spaces onto Kählerian spaces (English) |
Author:
|
al Lami, Raad J. K. |
Author:
|
Škodová, Marie |
Author:
|
Mikeš, Josef |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
42 |
Issue:
|
5 |
Year:
|
2006 |
Pages:
|
291-299 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper we consider holomorphically projective mappings from the special generally recurrent equiaffine spaces $A_n$ onto (pseudo-) Kählerian spaces $\bar{K}_n$. We proved that these spaces $A_n$ do not admit nontrivial holomorphically projective mappings onto $\bar{K}_n$. These results are a generalization of results by T. Sakaguchi, J. Mikeš and V. V. Domashev, which were done for holomorphically projective mappings of symmetric, recurrent and semisymmetric Kählerian spaces. (English) |
MSC:
|
53B20 |
MSC:
|
53B30 |
MSC:
|
53B35 |
idZBL:
|
Zbl 1164.53317 |
idMR:
|
MR2322415 |
. |
Date available:
|
2008-06-06T22:49:55Z |
Last updated:
|
2012-05-10 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/108035 |
. |
Reference:
|
[1] Boeckx E., Kowalski O., Vanhecke L.: Riemannian manifolds of conullity two.World Sci. 1996. Zbl 0904.53006, MR 1462887 |
Reference:
|
[2] Domashev V. V., Mikeš J.: Theory of holomorphically projective mappings of Kählerian spaces.Math. Notes 23 (1978), 160–163; translation from Mat. Zametki, 23 2 (1978), 297–304. Zbl 0406.53052, MR 0492674 |
Reference:
|
[3] Eisenhart L. P.: Non-Riemannian Geometry.Princenton Univ. Press. 1927, Colloquium Publ. Vol. 8., AMS, Providence, 2003. MR 0035081 |
Reference:
|
[4] Gray A., Hervella L. M.: The sixteen classes of almost Hermitian manifolds and their linear invariants.Ann. Mat. Pura Appl. (4) 123 (1980), 35–58. Zbl 0444.53032, MR 0581924 |
Reference:
|
[5] Kaygorodov V. R.: On Riemannian spaces $D_n^m$.Itogi Nauki i Tekhniki,Tr. Geom. Sem. Vol. 5, All-Union Institute for Scientific and Technical Information (VINITI), Akad. Nauk SSSR, Moscow, 1974, 359–373. |
Reference:
|
[6] Kaygorodov V. R.: Structure of curvature of space-time.Itogi Nauki i Tekhniki, Problemy Geometrii, Vol. 14, All-Union Institute for Scientific and Technical Information (VINITI), Akad. Nauk SSSR, Moscow, 1983, 177–204. MR 0697392 |
Reference:
|
[7] Lakomá L., Jukl M.: The decomposition of tensor spaces with almost complex structure.Rend. Circ. Mat. Palermo (2) Suppl. 72 (2004), 145–150. Zbl 1064.53015, MR 2069402 |
Reference:
|
[8] Mikeš J.: On holomorphically projective mappings of Kählerian spaces.Ukr. Geom. Sb., Kharkov, 23 (1980), 90–98. Zbl 0463.53013 |
Reference:
|
[9] Mikeš J.: On geodesic mappings of $m$-symmetric and generally semi-symmetric spaces.Russ. Math. 36 8 (1992), 38–42; translation from Izv. Vyssh. Uchebn. Zaved. Mat. 8 (363) (1992), 42–46. Zbl 0816.53009, MR 1233688 |
Reference:
|
[10] Mikeš J.: Geodesic mappings onto semisymmetric spaces.Russ. Math. 38 2 (1994), 35–41; translation from Izv. Vyssh. Uchebn. Zaved. Mat. 2 (381) (1994), 37–43. Zbl 0835.53049, MR 1302090 |
Reference:
|
[11] Mikeš J.: On special F-planar mappings of affine-connected spaces.Vestn. Moskov. Univ. 3 (1994), 18–24. MR 1315721 |
Reference:
|
[12] Mikeš J.: On the general trace decomposition problem.Differential Geom. Appl. Proc. Conf. Aug. 28 – Sept. 1, Brno, 1995, Czech Republic, Masaryk Univ., Brno 1996, 45–50. MR 1406322 |
Reference:
|
[13] Mikeš J.: Geodesic mappings of affine-connected and Riemannian spaces.J. Math. Sci. (New York) 78 3 (1996), 311–333. Zbl 0866.53028, MR 1384327 |
Reference:
|
[14] Mikeš J.: Holomorphically projective mappings and their generalizations.J. Math. Sci. (New York) 89 3 (1998), 1334–1353. Zbl 0983.53013, MR 1619720 |
Reference:
|
[15] Mikeš J., Pokorná O.: On holomorphically projective mappings onto Kählerian spaces.Rend. Circ. Mat. Palermo (2) Suppl. 69 (2002), 181–186. Zbl 1023.53015, MR 1972433 |
Reference:
|
[16] Mikeš J., Radulović Ž., Haddad M.: Geodesic and holomorphically projective mappings of $m$-pseudo- and $m$-quasisymmetric Riemannian spaces.Russ. Math. 40 10 (1996), 28–32; Izv. Vyssh. Uchebn. Mat. 10 (413) (1996), 30–35. Zbl 0890.53041, MR 1447076 |
Reference:
|
[17] Mikeš J., Rachůnek L.: $T$-semisymmetric spaces and concircular vector fields.Rend. Circ. Mat. Palermo (2) Suppl. 69 (2002), 187–193. MR 1972434 |
Reference:
|
[18] Mikeš J., Sinyukov N. S.: On quasiplanar mappings of spaces of affine connection.(Russian) Izv. Vyssh. Uchebn. Zaved. Mat. 1(248) (1983), 55–61; (English) Sov. Math. 27 1 (1983), 63–70. Zbl 0526.53013, MR 0694014 |
Reference:
|
[19] Otsuki T., Tashiro Y.: On curves in Kaehlerian spaces.Math. J. Okayama Univ. 4 (1954), 57–78. Zbl 0057.14101, MR 0066024 |
Reference:
|
[20] Petrov A. Z.: New method in general relativity theory.Moscow, Nauka, 1966, 495p. |
Reference:
|
[21] Sakaguchi T.: On the holomorphically projective correspondence between Kählerian spaces preserving complex structure.Hokkaido Math. J. 3 (1974), 203–212. Zbl 0305.53024, MR 0370411 |
Reference:
|
[22] Shirokov P. A.: Selected Work in Geometry.Kazan State Univ. Press, Kazan, 1966. |
Reference:
|
[23] Sinyukov N. S.: Geodesic mappings of Riemannian spaces.Moscow, Nauka, 1979, 256p. Zbl 0637.53020, MR 0552022 |
Reference:
|
[24] Škodová M., Mikeš J., Pokorná O.: On holomorphically projective mappings from equiaffine symmetric and recurrent spaces onto Kählerian spaces.Rend. Circ. Mat. Palermo (2) Suppl. 75 (2005), 309–316. Zbl 1109.53019, MR 2152369 |
Reference:
|
[25] Sobchuk V. S., Mikeš J., Pokorná O.: On almost geodesic mappings $\pi _2$ between semisymmetric Riemannian spaces.Novi Sad J. Math. 29 3 (1999), 309–312. Zbl 1012.53015, MR 1771008 |
Reference:
|
[26] Yano K.: Concircular geometry. I-IV.Proc. Imp. Acad. Tokyo 16 (1940), 195–200, 354–360, 442–448, 505–511. |
Reference:
|
[27] Yano K.: Differential geometry on complex and almost complex spaces.Oxford-London-New York-Paris-Frankfurt, Pergamon Press 1965, XII, 323p. Zbl 0127.12405, MR 0187181 |
. |