Previous |  Up |  Next

Article

Title: On holomorphically projective mappings from equiaffine generally recurrent spaces onto Kählerian spaces (English)
Author: al Lami, Raad J. K.
Author: Škodová, Marie
Author: Mikeš, Josef
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 42
Issue: 5
Year: 2006
Pages: 291-299
Summary lang: English
.
Category: math
.
Summary: In this paper we consider holomorphically projective mappings from the special generally recurrent equiaffine spaces $A_n$ onto (pseudo-) Kählerian spaces $\bar{K}_n$. We proved that these spaces $A_n$ do not admit nontrivial holomorphically projective mappings onto $\bar{K}_n$. These results are a generalization of results by T. Sakaguchi, J. Mikeš and V. V. Domashev, which were done for holomorphically projective mappings of symmetric, recurrent and semisymmetric Kählerian spaces. (English)
MSC: 53B20
MSC: 53B30
MSC: 53B35
idZBL: Zbl 1164.53317
idMR: MR2322415
.
Date available: 2008-06-06T22:49:55Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/108035
.
Reference: [1] Boeckx E., Kowalski O., Vanhecke L.: Riemannian manifolds of conullity two.World Sci. 1996. Zbl 0904.53006, MR 1462887
Reference: [2] Domashev V. V., Mikeš J.: Theory of holomorphically projective mappings of Kählerian spaces.Math. Notes 23 (1978), 160–163; translation from Mat. Zametki, 23 2 (1978), 297–304. Zbl 0406.53052, MR 0492674
Reference: [3] Eisenhart L. P.: Non-Riemannian Geometry.Princenton Univ. Press. 1927, Colloquium Publ. Vol. 8., AMS, Providence, 2003. MR 0035081
Reference: [4] Gray A., Hervella L. M.: The sixteen classes of almost Hermitian manifolds and their linear invariants.Ann. Mat. Pura Appl. (4) 123 (1980), 35–58. Zbl 0444.53032, MR 0581924
Reference: [5] Kaygorodov V. R.: On Riemannian spaces $D_n^m$.Itogi Nauki i Tekhniki,Tr. Geom. Sem. Vol. 5, All-Union Institute for Scientific and Technical Information (VINITI), Akad. Nauk SSSR, Moscow, 1974, 359–373.
Reference: [6] Kaygorodov V. R.: Structure of curvature of space-time.Itogi Nauki i Tekhniki, Problemy Geometrii, Vol. 14, All-Union Institute for Scientific and Technical Information (VINITI), Akad. Nauk SSSR, Moscow, 1983, 177–204. MR 0697392
Reference: [7] Lakomá L., Jukl M.: The decomposition of tensor spaces with almost complex structure.Rend. Circ. Mat. Palermo (2) Suppl. 72 (2004), 145–150. Zbl 1064.53015, MR 2069402
Reference: [8] Mikeš J.: On holomorphically projective mappings of Kählerian spaces.Ukr. Geom. Sb., Kharkov, 23 (1980), 90–98. Zbl 0463.53013
Reference: [9] Mikeš J.: On geodesic mappings of $m$-symmetric and generally semi-symmetric spaces.Russ. Math. 36 8 (1992), 38–42; translation from Izv. Vyssh. Uchebn. Zaved. Mat. 8 (363) (1992), 42–46. Zbl 0816.53009, MR 1233688
Reference: [10] Mikeš J.: Geodesic mappings onto semisymmetric spaces.Russ. Math. 38 2 (1994), 35–41; translation from Izv. Vyssh. Uchebn. Zaved. Mat. 2 (381) (1994), 37–43. Zbl 0835.53049, MR 1302090
Reference: [11] Mikeš J.: On special F-planar mappings of affine-connected spaces.Vestn. Moskov. Univ. 3 (1994), 18–24. MR 1315721
Reference: [12] Mikeš J.: On the general trace decomposition problem.Differential Geom. Appl. Proc. Conf. Aug. 28 – Sept. 1, Brno, 1995, Czech Republic, Masaryk Univ., Brno 1996, 45–50. MR 1406322
Reference: [13] Mikeš J.: Geodesic mappings of affine-connected and Riemannian spaces.J. Math. Sci. (New York) 78 3 (1996), 311–333. Zbl 0866.53028, MR 1384327
Reference: [14] Mikeš J.: Holomorphically projective mappings and their generalizations.J. Math. Sci. (New York) 89 3 (1998), 1334–1353. Zbl 0983.53013, MR 1619720
Reference: [15] Mikeš J., Pokorná O.: On holomorphically projective mappings onto Kählerian spaces.Rend. Circ. Mat. Palermo (2) Suppl. 69 (2002), 181–186. Zbl 1023.53015, MR 1972433
Reference: [16] Mikeš J., Radulović Ž., Haddad M.: Geodesic and holomorphically projective mappings of $m$-pseudo- and $m$-quasisymmetric Riemannian spaces.Russ. Math. 40 10 (1996), 28–32; Izv. Vyssh. Uchebn. Mat. 10 (413) (1996), 30–35. Zbl 0890.53041, MR 1447076
Reference: [17] Mikeš J., Rachůnek L.: $T$-semisymmetric spaces and concircular vector fields.Rend. Circ. Mat. Palermo (2) Suppl. 69 (2002), 187–193. MR 1972434
Reference: [18] Mikeš J., Sinyukov N. S.: On quasiplanar mappings of spaces of affine connection.(Russian) Izv. Vyssh. Uchebn. Zaved. Mat. 1(248) (1983), 55–61; (English) Sov. Math. 27 1 (1983), 63–70. Zbl 0526.53013, MR 0694014
Reference: [19] Otsuki T., Tashiro Y.: On curves in Kaehlerian spaces.Math. J. Okayama Univ. 4 (1954), 57–78. Zbl 0057.14101, MR 0066024
Reference: [20] Petrov A. Z.: New method in general relativity theory.Moscow, Nauka, 1966, 495p.
Reference: [21] Sakaguchi T.: On the holomorphically projective correspondence between Kählerian spaces preserving complex structure.Hokkaido Math. J. 3 (1974), 203–212. Zbl 0305.53024, MR 0370411
Reference: [22] Shirokov P. A.: Selected Work in Geometry.Kazan State Univ. Press, Kazan, 1966.
Reference: [23] Sinyukov N. S.: Geodesic mappings of Riemannian spaces.Moscow, Nauka, 1979, 256p. Zbl 0637.53020, MR 0552022
Reference: [24] Škodová M., Mikeš J., Pokorná O.: On holomorphically projective mappings from equiaffine symmetric and recurrent spaces onto Kählerian spaces.Rend. Circ. Mat. Palermo (2) Suppl. 75 (2005), 309–316. Zbl 1109.53019, MR 2152369
Reference: [25] Sobchuk V. S., Mikeš J., Pokorná O.: On almost geodesic mappings $\pi _2$ between semisymmetric Riemannian spaces.Novi Sad J. Math. 29 3 (1999), 309–312. Zbl 1012.53015, MR 1771008
Reference: [26] Yano K.: Concircular geometry. I-IV.Proc. Imp. Acad. Tokyo 16 (1940), 195–200, 354–360, 442–448, 505–511.
Reference: [27] Yano K.: Differential geometry on complex and almost complex spaces.Oxford-London-New York-Paris-Frankfurt, Pergamon Press 1965, XII, 323p. Zbl 0127.12405, MR 0187181
.

Files

Files Size Format View
ArchMathRetro_042-2006-5_16.pdf 225.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo