Previous |  Up |  Next

Article

Title: Split octonions and generic rank two distributions in dimension five (English)
Author: Sagerschnig, Katja
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 42
Issue: 5
Year: 2006
Pages: 329-339
Summary lang: English
.
Category: math
.
Summary: In his famous five variables paper Elie Cartan showed that one can canonically associate to a generic rank 2 distribution on a 5 dimensional manifold a Cartan geometry modeled on the homogeneous space $\tilde{G}_2/P$, where $P$ is one of the maximal parabolic subgroups of the exceptional Lie group $\tilde{G}_2$. In this article, we use the algebra of split octonions to give an explicit global description of the distribution corresponding to the homogeneous model. (English)
MSC: 53C30
MSC: 58A30
idZBL: Zbl 1164.53362
idMR: MR2322419
.
Date available: 2008-06-06T22:50:06Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/108039
.
Reference: [1] Baston R. J., Eastwood M. G.: The Penrose transform: its interaction with representation theory.Oxford Science Publications, Clarendon Press, 1989. Zbl 0726.58004, MR 1038279
Reference: [2] Čap A.: Two constructions with parabolic geometries.Proceedings of the 25th Winter School on Geometry and Physics, Srní 2005, Rend. Circ. Mat. Palermo (2) Suppl. 79 (2006), 11–38, preprint math.DG/0504389. Zbl 1120.53013, MR 2287124
Reference: [3] Cartan E.: Les systèmes de Pfaff à cinque variables et les équations aux dérivées partielles du seconde ordre.Ann. Sci. Ècole Normale Sup. 27 (1910), 109–192. MR 1509120
Reference: [4] Sagerschnig K.: Parabolic geometries determined by filtrations of the tangent bundle.to appear in Proceedings of the 25th Winter School on Geometry and Physics, Srni 2005, Rend. Circ. Mat. Palermo (2) Suppl. Zbl 1114.53029, MR 2287136
Reference: [5] Springer T. A., Veldkamp F. D.: Octonions, Jordan Algebras and Exceptional Groups.Springer, Berlin, 2000. Zbl 1087.17001, MR 1763974
Reference: [6] Yamaguchi K.: $G_2$-geometry of overdetermined systems of second order.Analysis and Geometry in Several Complex Variables (Katata, 1997),Trends Math. (1999), 289–314, Trends Math. (1999). MR 1699860
.

Files

Files Size Format View
ArchMathRetro_042-2006-5_20.pdf 236.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo