Title:
|
Oscillation theorems for certain even order neutral differential equations (English) |
Author:
|
Yang, Qi Gui |
Author:
|
Cheng, Sui-Sun |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
43 |
Issue:
|
2 |
Year:
|
2007 |
Pages:
|
105-122 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
This paper is concerned with a class of even order nonlinear differential equations of the form \[ \frac{d}{dt}\Big ( \Big |\left( x(t)+p(t)x(\tau (t))\right) ^{(n-1)}\Big | ^{\alpha -1}(x(t)+p(t)x(\tau (t)))^{(n-1)}\Big ) +F\big ( t,x(g(t))\big ) =0\,, \] where $n$ is even and $t\ge t_{0}$. By using the generalized Riccati transformation and the averaging technique, new oscillation criteria are obtained which are either extensions of or complementary to a number of existing results. Our results are more general and sharper than some previous results even for second order equations. (English) |
Keyword:
|
neutral differential equation |
Keyword:
|
oscillation criterion |
Keyword:
|
Riccati transform |
Keyword:
|
averaging method |
MSC:
|
34K11 |
idZBL:
|
Zbl 1164.34031 |
idMR:
|
MR2336963 |
. |
Date available:
|
2008-06-06T22:50:47Z |
Last updated:
|
2012-05-10 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/108056 |
. |
Reference:
|
[1] Agarwal R. P., Grace S. R., O’Regan D.: Oscillation criteria for certain $n$-th order differential equations with deviating arguments.J. Math. Anal. Appl. 262 (2002), 601–522. Zbl 0997.34060, MR 1859327 |
Reference:
|
[2] Agarwal R. P., Grace S. R., O’Regan D.: Oscillation Theory for Difference and Functional Differential equations.Kluwer, Dordrecht, 2000. Zbl 0954.34002, MR 1774732 |
Reference:
|
[3] Grace S. R., Lalli B. S.: Oscillation theorems for damped differential equations of even order with deviating argument.SIAM J. Math. Anal. 15 (1984), 308–316. MR 0731869 |
Reference:
|
[4] Grammatikopoulos M. K., Ladas G., Meimaridou A.: Oscillations of second order neutral delay differential equations.Rat. Mat. 1 (1985), 267–274. Zbl 0581.34051, MR 0827474 |
Reference:
|
[5] Hardy G. H., Littlewood J. E., Polya G.: Inequalities.second ed., Caombridge Univ. Press, Cambridge, 1988. Zbl 0634.26008, MR 0944909 |
Reference:
|
[6] Kiguradze I., Partsvania N., Stavroulakis I. P.: On oscillatory properties of higher order advanced functional differential equations.(Russian) Differentsial’nye Uravneniya 388 (2002), 1030–1041. MR 2021167 |
Reference:
|
[7] Kong Q.: Interval criteria for oscillation of second-order linear ordinary differential equations.J. Math. Anal. Appl. 229 (1999), 258–270. Zbl 0924.34026, MR 1664352 |
Reference:
|
[8] Kusano T., Lalli B. S.: On oscillation of half-linear functional differential equations with deviating arguments.Hiroshima Math. J., 24 (1994), 549-563. Zbl 0836.34081, MR 1309139 |
Reference:
|
[9] Philos, Ch. G.: A new criteria for the oscillatory and asymptotic behavior of delay differential equations.Bull. Acad. Pol. Sci. Mat. 39 (1981), 61–64. MR 0640329 |
Reference:
|
[10] Philos, Ch. G.: Oscillation theorems for linear differential equations of second order.Arch. Math. 53 (1989), 483–492. Zbl 0661.34030, MR 1019162 |
Reference:
|
[11] Wang Q. R., Yang Q. G.: Interval criteria for oscillation of second-order half-linear differential equations.J. Math. Anal. Appl. 291 (2004), 224–236. Zbl 1053.34034, MR 2034069 |
Reference:
|
[12] Wong P. J. Y., Agarwal R. P.: Oscillation theorems and existence criteria of asymptotically monotone solutions for second order differential equations.Dynam. Systems Appl. 4 (1995), 477–496. Zbl 0840.34021, MR 1365834 |
Reference:
|
[13] Wong P. J. Y., Agarwal R. P.: Oscillatory behavior of solutions of certain second order differential equations.J. Math. Anal. Appl. 198 (1996), 337–354. MR 1376268 |
Reference:
|
[14] Xu Z. T., Xia Y.: Integral averaging technique and oscillation of even order delay differential equations.J. Math. Anal. Appl. 292 (2004), 238–246. MR 2050227 |
Reference:
|
[15] Yang Q. G., Tang Y.: Oscillation of even order nonlinear functional differential equations with damping.Acta Math. Hungar. 1023 (2004), 223–238. Zbl 1048.34115, MR 2035372 |
Reference:
|
[16] Yang Q. G., Yang L. J., Zhu S. M.: Interval criteria for oscillation of second order nonlinear neutral differential equations.Computers and Math. Appl. 465-6 (2003), 903–918. Zbl 1057.34088, MR 2020448 |
. |