Previous |  Up |  Next

Article

Title: Oscillation theorems for certain even order neutral differential equations (English)
Author: Yang, Qi Gui
Author: Cheng, Sui-Sun
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 43
Issue: 2
Year: 2007
Pages: 105-122
Summary lang: English
.
Category: math
.
Summary: This paper is concerned with a class of even order nonlinear differential equations of the form \[ \frac{d}{dt}\Big ( \Big |\left( x(t)+p(t)x(\tau (t))\right) ^{(n-1)}\Big | ^{\alpha -1}(x(t)+p(t)x(\tau (t)))^{(n-1)}\Big ) +F\big ( t,x(g(t))\big ) =0\,, \] where $n$ is even and $t\ge t_{0}$. By using the generalized Riccati transformation and the averaging technique, new oscillation criteria are obtained which are either extensions of or complementary to a number of existing results. Our results are more general and sharper than some previous results even for second order equations. (English)
Keyword: neutral differential equation
Keyword: oscillation criterion
Keyword: Riccati transform
Keyword: averaging method
MSC: 34K11
idZBL: Zbl 1164.34031
idMR: MR2336963
.
Date available: 2008-06-06T22:50:47Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/108056
.
Reference: [1] Agarwal R. P., Grace S. R., O’Regan D.: Oscillation criteria for certain $n$-th order differential equations with deviating arguments.J. Math. Anal. Appl. 262 (2002), 601–522. Zbl 0997.34060, MR 1859327
Reference: [2] Agarwal R. P., Grace S. R., O’Regan D.: Oscillation Theory for Difference and Functional Differential equations.Kluwer, Dordrecht, 2000. Zbl 0954.34002, MR 1774732
Reference: [3] Grace S. R., Lalli B. S.: Oscillation theorems for damped differential equations of even order with deviating argument.SIAM J. Math. Anal. 15 (1984), 308–316. MR 0731869
Reference: [4] Grammatikopoulos M. K., Ladas G., Meimaridou A.: Oscillations of second order neutral delay differential equations.Rat. Mat. 1 (1985), 267–274. Zbl 0581.34051, MR 0827474
Reference: [5] Hardy G. H., Littlewood J. E., Polya G.: Inequalities.second ed., Caombridge Univ. Press, Cambridge, 1988. Zbl 0634.26008, MR 0944909
Reference: [6] Kiguradze I., Partsvania N., Stavroulakis I. P.: On oscillatory properties of higher order advanced functional differential equations.(Russian) Differentsial’nye Uravneniya 388 (2002), 1030–1041. MR 2021167
Reference: [7] Kong Q.: Interval criteria for oscillation of second-order linear ordinary differential equations.J. Math. Anal. Appl. 229 (1999), 258–270. Zbl 0924.34026, MR 1664352
Reference: [8] Kusano T., Lalli B. S.: On oscillation of half-linear functional differential equations with deviating arguments.Hiroshima Math. J., 24 (1994), 549-563. Zbl 0836.34081, MR 1309139
Reference: [9] Philos, Ch. G.: A new criteria for the oscillatory and asymptotic behavior of delay differential equations.Bull. Acad. Pol. Sci. Mat. 39 (1981), 61–64. MR 0640329
Reference: [10] Philos, Ch. G.: Oscillation theorems for linear differential equations of second order.Arch. Math. 53 (1989), 483–492. Zbl 0661.34030, MR 1019162
Reference: [11] Wang Q. R., Yang Q. G.: Interval criteria for oscillation of second-order half-linear differential equations.J. Math. Anal. Appl. 291 (2004), 224–236. Zbl 1053.34034, MR 2034069
Reference: [12] Wong P. J. Y., Agarwal R. P.: Oscillation theorems and existence criteria of asymptotically monotone solutions for second order differential equations.Dynam. Systems Appl. 4 (1995), 477–496. Zbl 0840.34021, MR 1365834
Reference: [13] Wong P. J. Y., Agarwal R. P.: Oscillatory behavior of solutions of certain second order differential equations.J. Math. Anal. Appl. 198 (1996), 337–354. MR 1376268
Reference: [14] Xu Z. T., Xia Y.: Integral averaging technique and oscillation of even order delay differential equations.J. Math. Anal. Appl. 292 (2004), 238–246. MR 2050227
Reference: [15] Yang Q. G., Tang Y.: Oscillation of even order nonlinear functional differential equations with damping.Acta Math. Hungar. 1023 (2004), 223–238. Zbl 1048.34115, MR 2035372
Reference: [16] Yang Q. G., Yang L. J., Zhu S. M.: Interval criteria for oscillation of second order nonlinear neutral differential equations.Computers and Math. Appl. 465-6 (2003), 903–918. Zbl 1057.34088, MR 2020448
.

Files

Files Size Format View
ArchMathRetro_043-2007-2_3.pdf 274.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo