Previous |  Up |  Next

Article

Title: On the behavior of the solutions to autonomous linear difference equations with continuous variable (English)
Author: Philos, Ch. G
Author: Purnaras, I. K.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 43
Issue: 2
Year: 2007
Pages: 133-155
Summary lang: English
.
Category: math
.
Summary: Autonomous linear neutral delay and, especially, (non-neutral) delay difference equations with continuous variable are considered, and some new results on the behavior of the solutions are established. The results are obtained by the use of appropriate positive roots of the corresponding characteristic equation. (English)
Keyword: difference equation with continuous variable
Keyword: delay difference equation
Keyword: neutral delay difference equation
Keyword: behavior of solutions
Keyword: characteristic equation
MSC: 39A10
MSC: 39A11
idZBL: Zbl 1164.39006
idMR: MR2336965
.
Date available: 2008-06-06T22:50:53Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/108058
.
Reference: [1] Agarwal R. P.: Difference Equations and Inequalities.Marcel Dekker, New York, 1992. Zbl 0925.39001, MR 1155840
Reference: [2] Arino O., Pituk M.: More on linear differential systems with small delays.J. Differential Equations 170 (2001), 381–407. Zbl 0989.34053, MR 1815189
Reference: [3] de Bruijn N. G.: On some linear functional equations.Publ. Math. Debrecen 1 (1950), 129–134. Zbl 0036.19501, MR 0036427
Reference: [4] Dix J. G., Philos, Ch. G., Purnaras I. K.: An asymptotic property of solutions to linear nonautonomous delay differential equations.Electron. J. Differential Equations 2005 (2005), No. 10, 1–9. Zbl 1076.34072, MR 2119064
Reference: [5] Dix J. G., Philos, Ch. G., Purnaras I. K.: Asymptotic properties of solutions to linear non-autonomous neutral differential equations.J. Math. Anal. Appl. 318 (2006), 296–304. Zbl 1104.34054, MR 2210889
Reference: [6] Domshlak Y.: Oscillatory properties of linear difference equations with continuous time.Differential Equations Dynam. Systems 1 (1993), 311–324. Zbl 0868.39006, MR 1259171
Reference: [7] Driver R. D.: Some harmless delays.Delay and Functional Differential Equations and Their Applications, Academic Press, New York, 1972, 103–119. Zbl 0284.34074, MR 0385277
Reference: [8] Driver R. D.: Linear differential systems with small delays.J. Differential Equations 21 (1976), 148–166. Zbl 0319.34067, MR 0404803
Reference: [9] Driver R. D., Ladas G., Vlahos P. N.: Asymptotic behavior of a linear delay difference equation.Proc. Amer. Math. Soc. 115 (1992), 105–112. Zbl 0751.39001, MR 1111217
Reference: [10] Driver R. D., Sasser D. W., Slater M. L.: The equation $x^{\prime }(t)=ax(t)+bx(t-\tau )$ with “small” delay.Amer. Math. Monthly 80 (1973), 990–995. Zbl 0292.34076, MR 0326104
Reference: [11] Elaydi S. N.: An Introduction to Difference Equations.Springer, New York, 1996. Zbl 0840.39002, MR 1410259
Reference: [12] Frasson M. V. S., Verduyn Lunel S. M.: Large time behaviour of linear functional differential equations.Integral Equations Operator Theory 47 (2003), 91–121. Zbl 1069.34115, MR 2015849
Reference: [13] Graef J. R., Qian C.: Asymptotic behavior of forced delay equations with periodic coefficients.Commun. Appl. Anal. 2 (1998), 551–564. Zbl 0903.34061, MR 1637012
Reference: [14] Györi I.: Invariant cones of positive initial functions for delay differential equations.Appl. Anal. 35 (1990), 21–41. Zbl 0662.34069, MR 1387399
Reference: [15] Györi I.: Sharp conditions for existence of nontrivial invariant cones of nonnegative initial values of difference equations.Appl. Math. Comput. 36 (1990), 89–111. Zbl 0715.39001, MR 1049397
Reference: [16] Kelley W. G., Peterson A. C.: Difference Equations: An Introduction with Applications.Academic Press, Inc., New York, 1991. Zbl 0733.39001, MR 1142573
Reference: [17] Kordonis I.-G. E., Niyianni N. T., Philos, Ch. G.: On the behavior of the solutions of scalar first order linear autonomous neutral delay differential equations.Arch. Math. (Basel) 71 (1998), 454–464. Zbl 0920.34065, MR 1653396
Reference: [18] Kordonis I.-G. E., Philos, Ch. G.: The behavior of solutions of linear integro-differential equations with unbounded delay.Comput. Math. Appl. 38 (1999), 45–50. MR 1698917
Reference: [19] Kordonis I.-G. E., Philos, Ch. G.: On the behavior of the solutions for linear autonomous neutral delay difference equations.J. Differ. Equations Appl. 5 (1999), 219–233. Zbl 0973.39005, MR 1697057
Reference: [20] Kordonis I.-G. E., Philos, Ch. G., Purnaras I. K.: Some results on the behavior of the solutions of a linear delay difference equation with periodic coefficients.Appl. Anal. 69 (1998), 83–104. Zbl 0903.39002, MR 1708189
Reference: [21] Kordonis I.-G. E., Philos, Ch. G., Purnaras I. K.: On the behavior of solutions of linear neutral integrodifferential equations with unbounded delay.Georgian Math. J. 11 (2004), 337–348. Zbl 1065.34075, MR 2084992
Reference: [22] Ladas G.: Recent developments in the oscillation of delay difference equations.Differential Equations (Colorado Springs, CO, 1989), Lecture Notes in Pure and Appl. Math. 127, Dekker, New York, 1991, 321–332. MR 1096768
Reference: [23] Ladas G., Pakula L., Wang Z.: Necessary and sufficient conditions for the oscillation of difference equations.Panamer. Math. J. 2 (1992), 17–26. Zbl 0773.39002, MR 1145924
Reference: [24] Lakshmikantham V., Trigiante D.: Theory of Difference Equations: Numerical Methods and Applications.Academic Press, Inc., New York, 1988. Zbl 0683.39001, MR 0939611
Reference: [25] Mickens R.: Difference Equations.Van Nostrand Reinhold, New York, 1990. Zbl 0949.39500, MR 1158461
Reference: [26] Norris M. J.: Unpublished notes on the delay differential equation $x^{\prime }(t)=bx(t-1)$ where $-1/e\le b<0$.October 1967.
Reference: [27] Philos, Ch. G.: Asymptotic behaviour, nonoscillation and stability in periodic first-order linear delay differential equations.Proc. Roy. Soc. Edinburgh Sect. A 128 (1998), 1371–1387. Zbl 0918.34067, MR 1663984
Reference: [28] Philos, Ch. G., Purnaras I. K.: Periodic first order linear neutral delay differential equations.Appl. Math. Comput. 117 (2001), 203–222. Zbl 1029.34061, MR 1806047
Reference: [29] Philos, Ch. G., Purnaras I. K.: The behavior of solutions of linear Volterra difference equations with infinite delay.Comput. Math. Appl. 47 (2004), 1555–1563. Zbl 1069.39012, MR 2079865
Reference: [30] Philos, Ch. G., Purnaras I. K.: Asymptotic properties, nonoscillation, and stability for scalar first order linear autonomous neutral delay differential equations.Electron. J. Differential Equations 2004 (2004), No. 03, 1–17. Zbl 1054.34109, MR 2036187
Reference: [31] Philos, Ch. G., Purnaras I. K.: An asymptotic result for some delay difference equations with continuous variable.Advances in Difference Equations 2004:1 (2004), 1–10. Zbl 1079.39011, MR 2059199
Reference: [32] Philos, Ch. G., Purnaras I. K.: An asymptotic result and a stability criterion for linear nonautonomous delay difference equations.Arch. Math. (Basel) 83 (2004), 243–255. Zbl 1060.39014, MR 2108552
Reference: [33] Philos, Ch. G., Purnaras I. K.: On the behavior of the solutions for certain linear autonomous difference equations.J. Differ. Equations Appl. 10 (2004), 1049–1067. Zbl 1070.39003, MR 2097112
Reference: [34] Philos, Ch. G., Purnaras I. K.: The behavior of the solutions of periodic linear neutral delay difference equations.J. Comput. Appl. Math. 175 (2005), 209–230. Zbl 1074.39012, MR 2108572
Reference: [35] Philos, Ch. G., Purnaras I. K.: On the behavior of the solutions for certain first order linear autonomous functional differential equations.Rocky Mountain J. Math. 36 (2006), 1999–2019. MR 2305642
Reference: [36] Philos, Ch. G., Purnaras I. K.: A result on the behavior of the solutions for scalar first order linear autonomous neutral delay differential equations.Math. Proc. Cambridge Philos. Soc. 140 (2006), 349–358. Zbl 1100.34063, MR 2212286
Reference: [37] Philos, Ch. G., Purnaras I. K.: Asymptotic behaviour and stability to linear non-autonomous neutral delay difference equations.J. Differ. Equations Appl. 11 (2005), 503–513. Zbl 1077.39008, MR 2152554
Reference: [38] Philos, Ch. G., Purnaras I. K.: More on the behavior of solutions to linear integrodifferential equations with unbounded delay.Funkcial. Ekvac. 48 (2005), 393–414. Zbl 1113.45011, MR 2197536
Reference: [39] Philos, Ch. G., Purnaras I. K.: On linear Volterra difference equations with infinite delay.Advances in Difference Equations 2006 (2006), Art. 78470, pp. 1–28. Zbl 1133.39002, MR 2209681
Reference: [40] Philos, Ch. G., Purnaras I. K.: On the behavior of the solutions to periodic linear delay differential and difference equations.J. Math. Anal. Appl. 322 (2006), 847–863. Zbl 1110.34042, MR 2250621
Reference: [41] Philos, Ch. G., Purnaras I. K.: On periodic linear neutral delay differential and difference equations.Electron. J. Differential Equations 2006 (2006), No. 110, 1–25. Zbl 1118.34077, MR 2255225
Reference: [42] Pituk M.: The limits of the solutions of a nonautonomous linear delay difference equation.Comput. Math. Appl. 42 (2001), 543–550. Zbl 0996.39011, MR 1838013
Reference: [43] Pituk M.: Asymptotic behavior of a nonhomogeneous linear recurrence system.J. Math. Anal. Appl. 267 (2002), 626–642. Zbl 1002.39011, MR 1888027
Reference: [44] Pituk M.: Cesàro summability in a linear autonomous difference equation.Proc. Amer. Math. Soc. 133 (2005), 3333–3339. Zbl 1085.39004, MR 2161157
Reference: [45] Sharkovsky A. N., Maistrenko, Yu. L., Romanenko E. Yu.: Difference Equations and Their Applications.Kluwer Academic Publishers, Dordrecht, 1993. MR 1244579
Reference: [46] Shen J. H.: Comparison and oscillation results for difference equations with continuous variable.Indian J. Pure Appl. Math. 31 (2000), 1633–1642. Zbl 0978.39010, MR 1816632
Reference: [47] Yan J., Zhang F.: Oscillation for system of delay difference equations.J. Math. Anal. Appl. 230 (1999), 223–231. Zbl 0920.39003, MR 1669617
Reference: [48] Zhang Y., Yan J., Zhao A.: Oscillation criteria for a difference equation.Indian J. Pure Appl. Math. 28 (1997), 1241–1249. Zbl 0904.39009, MR 1605506
.

Files

Files Size Format View
ArchMathRetro_043-2007-2_5.pdf 290.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo