Previous |  Up |  Next

Article

Title: On locally Lipschitz locally compact transformation groups of manifolds (English)
Author: George Michael, A. A.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 43
Issue: 3
Year: 2007
Pages: 159-162
Summary lang: English
.
Category: math
.
Summary: In this paper we show that a “locally Lipschitz” locally compact transformation group acting continuously and effectively on a connected paracompact locally Euclidean topological manifold is a Lie group. This is a contribution to the proof of the Hilbert-Smith conjecture. It generalizes the classical Bochner-Montgomery-Kuranishi Theorem[1, 9] and also the Repovš-Ščepin Theorem [17] which holds only for Riemannian manifolds. (English)
Keyword: locally Lipschitz transformation group
Keyword: Hilbert-Smith conjecture
MSC: 57S05
idZBL: Zbl 1164.57014
idMR: MR2354804
.
Date available: 2008-06-06T22:50:59Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/108061
.
Reference: [1] Bochner S., Montgomery D.: Locally compact groups of differentiable transformations.Ann. of Math. (2) 47 (1946), 639–653. Zbl 0061.04407, MR 0018187
Reference: [2] Bourbaki N.: Topologie générale, Chap. 1-4.Hermann, Paris 1971. MR 0358652
Reference: [3] Bredon G. E., Raymond F., Williams R. F.: $p$-Adic transformation groups.Trans. Amer. Math. Soc. 99 (1961), 488–498. MR 0142682
Reference: [4] Dieudonne J.: Foundations of modern analysis.Academic Press, New York–London 1960. Zbl 0100.04201, MR 0120319
Reference: [5] Dress A.: Newman’s theorems on transformation groups.Topology, 8 (1969), 203–207. Zbl 0176.53201, MR 0238353
Reference: [6] Federer H.: Geometric measure theory.Springer-Verlag, Berlin–Heidelberg–New York, N.Y., 1969. Zbl 0176.00801, MR 0257325
Reference: [7] Hofmann K. H., Morris S. A.: The structure of compact groups.de Gruyter Stud. Math. 25 (1998). Zbl 0919.22001, MR 1646190
Reference: [8] Karube T.: Transformation groups satisfying some local metric conditions.J. Math. Soc. Japan 18, No. 1 (1966), 45–50. Zbl 0136.43801, MR 0188342
Reference: [9] Kuranishi M.: On conditions of differentiability of locally compact groups.Nagoya Math. J. 1 (1950), 71–81. Zbl 0037.30502, MR 0038355
Reference: [10] Michael G.: On the smoothing problem.Tsukuba J. Math. 25, No. 1 (2001), 13–45. Zbl 0988.57014, MR 1846867
Reference: [11] Montgomery D.: Finite dimensionality of certain transformation groups.Illinois J. Math. 1 (1957), 28–35. Zbl 0077.36702, MR 0083680
Reference: [12] Montgomery D., Zippin L.: Topological transformation groups.Interscience Publishers, New York, 1955. Zbl 0068.01904, MR 0073104
Reference: [13] Nagami K. R.: Mappings of finite order and dimension theory.Japan J. Math. 30 (1960), 25–54. Zbl 0106.16002, MR 0142101
Reference: [14] Nagami K. R.: Dimension-theoretical structure of locally compact groups.J. Math. Soc. Japan 14, No. 4 (1962), 379–396. Zbl 0118.27001, MR 0142679
Reference: [15] Nagami K. R.: Dimension theory.Academic Press, New York, 1970. Zbl 0224.54060, MR 0271918
Reference: [16] Nagata J.: Modern dimension theory.Sigma Ser. Pure Math. 2 (1983). Zbl 0518.54002
Reference: [17] Repovš D., Ščepin E. V.: A proof of the Hilbert-Smith conjecture for actions by Lipschitz maps.Math. Ann. 308 (1997), 361–364. Zbl 0879.57025, MR 1464908
Reference: [18] Yang C. T.: p-adic transformation groups.Michigan Math. J. 7 (1960), 201–218. Zbl 0094.17502, MR 0120310
.

Files

Files Size Format View
ArchMathRetro_043-2007-3_2.pdf 169.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo