Title:
|
Hybrid fixed point theory for right monotone increasing multi-valued mappings and neutral functional differential inclusions (English) |
Author:
|
Dhage, B. C. |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
43 |
Issue:
|
4 |
Year:
|
2007 |
Pages:
|
265-284 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper, some hybrid fixed point theorems for the right monotone increasing multi-valued mappings in ordered Banach spaces are proved via measure of noncompactness and they are further applied to the neutral functional nonconvex differential inclusions involving discontinuous multi-functions for proving the existence results under mixed Lipschitz, compactness and right monotonicity conditions. Our results improve the multi-valued hybrid fixed point theorems of Dhage (Dhage, B. C., A fixed point theorem for multivalued mappings on ordered Banach spaces with applications I, Nonlinear Anal. Forum 10 (2005), 105–126.) under weaker convexity conditions. (English) |
Keyword:
|
ordered Banach space |
Keyword:
|
hybrid fixed point theorem |
Keyword:
|
neutral functional differential inclusion and existence theorem |
MSC:
|
34A60 |
MSC:
|
34K40 |
MSC:
|
47A25 |
MSC:
|
47H10 |
MSC:
|
47N20 |
idZBL:
|
Zbl 1164.47056 |
idMR:
|
MR2378527 |
. |
Date available:
|
2008-06-06T22:51:35Z |
Last updated:
|
2012-05-10 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/108071 |
. |
Reference:
|
[1] Agarwal R. P., Dhage B. C., O’Regan D.: The method of upper and lower solution for differential inclusions via a lattice fixed point theorem.Dynamic Systems Appl. 12 (2003), 1–7. MR 1989018 |
Reference:
|
[2] Akhmerov P. P., Kamenskii M. I., Potapov A. S., Sadovskii B. N.: Measures of Noncompactness and Condensing Operators.Birkhäuser 1992. MR 1153247 |
Reference:
|
[3] Andres J., Górniewicz L.: Topological Fixed Point Principles for Boundary Value Problems.Kluwer, 2003. MR 1998968 |
Reference:
|
[4] Banas J., Lecko M.: Fixed points of the product of operators in Banach algebras.PanAmer. Math. J. 12 (2002), 101–109. MR 1895774 |
Reference:
|
[5] Covitz H., Nadler S. B., Jr.: Multivalued contraction mappings in generalized metric spaces.Israel J. Math. 8 (1970), 5–11. MR 0263062 |
Reference:
|
[6] Deimling K.: Multi-valued Differential Equations.De Gruyter, Berlin 1998. |
Reference:
|
[7] Dhage B. C.: Multi-valued operators and fixed point theorems in Banach algebras I.Taiwanese J. Math. 10 (4), (2006), 1025–1045. Zbl 1144.47321, MR 2229639 |
Reference:
|
[8] Dhage B. C.: Multi-valued mappings and fixed points I.Nonlinear Funct. Anal. Appl. 10 (3), (2005), 359–378. Zbl 1100.47040, MR 2194603 |
Reference:
|
[9] Dhage B. C.: Hybrid fixed point theory for strictly monotone increasing multi-valued mappings with applications.Comput. Math. Appl. 53 (2007), 803–824. Zbl 1144.47041, MR 2327635 |
Reference:
|
[10] Dhage B. C.: A fixed point theorem for multivalued mappings on ordered Banach spaces with applications I.Nonlinear Anal. Forum 10 (2005), 105–126. MR 2162344 |
Reference:
|
[11] Dhage B. C.: A general multi-valued hybrid fixed point theorem and perturbed differential inclusions.Nonlinear Anal. 64 (2006), 2747–2772. Zbl 1100.47045, MR 2218544 |
Reference:
|
[12] Dhage B. C.: Some algebraic fixed point theorems for multi-valued operators with applications.DISC. Math. Differential inclusions, Control & Optimization 26 (2006), 5–55. MR 2330779 |
Reference:
|
[13] Dhage B. C., Ntouyas S. K.: Existence results for neutral functional differential inclusions.Fixed Point Theory 5 (2005), 235–248. Zbl 1080.34063, MR 2117335 |
Reference:
|
[14] Dajun Guo, Lakshmikanthm V.: Nonlinear Problems in Abstract Cones.Academic Press, New York–London, 1988. |
Reference:
|
[15] Hale J. K.: Theory of Functional Differential Equations.Springer, New York 1977. Zbl 0352.34001, MR 0508721 |
Reference:
|
[16] Heikkilä S., Lakshmikantham V.: Monotone Iterative Technique for Nonlinear Discontinues Differential Equations.Marcel Dekker Inc., New York, 1994. MR 1280028 |
Reference:
|
[17] Heikkilä S., Hu S.: On fixed points of multi-functions in ordered spaces.Appl. Anal. 53 (1993), 115–127. |
Reference:
|
[18] Hu S., Papageorgiou N. S.,: Handbook of Multivalued Analysis, Vol. I: Theory.Kluwer Academic Publishers, Dordrechet–Boston–London 1997. MR 1485775 |
Reference:
|
[19] Lasota A., Opial Z.: An application of the Kakutani- Ky Fan theorem in the theory of ordinary differential equations.Bull. Polish Acad. Sci. Ser. Sci. Math. Astronom. Phys. 13 (1965), 781–786. Zbl 0151.10703, MR 0196178 |
Reference:
|
[20] Ntouyas S. K.: Initial and boundary value problems for functional differential equations via topological transversality method : A Survey.Bull. Greek Math. Soc. 40 (1998), 3–41. MR 1671786 |
Reference:
|
[21] Petruşel A.: Operatorial Inclusions.House of the Book of Science, Cluj-Napoca, 2002. Zbl 1057.47004, MR 1939244 |
Reference:
|
[22] Zeidler E.: Nonlinear Functional Analysis and Its Applications: Part I.Springer Verlag, 1985. MR 0768749 |
. |