Title:
|
On the finite dimension of attractors of doubly nonlinear parabolic systems with l-trajectories (English) |
Author:
|
El Ouardi, Hamid |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
43 |
Issue:
|
4 |
Year:
|
2007 |
Pages:
|
289-303 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
This paper is concerned with the asymptotic behaviour of a class of doubly nonlinear parabolic systems. In particular, we prove the existence of the global attractor which has, in one and two space dimensions, finite fractal dimension. (English) |
Keyword:
|
doubly nonlinear parabolic systems |
Keyword:
|
existence of solutions |
Keyword:
|
global and exponential attractor |
Keyword:
|
fractal dimension and l-trajectories |
MSC:
|
35B40 |
MSC:
|
35B41 |
MSC:
|
35K50 |
MSC:
|
35K55 |
MSC:
|
35K57 |
MSC:
|
35K65 |
MSC:
|
37L30 |
idZBL:
|
Zbl 1164.35045 |
idMR:
|
MR2378529 |
. |
Date available:
|
2008-06-06T22:51:41Z |
Last updated:
|
2012-05-10 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/108073 |
. |
Reference:
|
[1] Alt H. W., Luckhaus S.: Quasilinear elliptic and parabolic differential equations.Math. Z. 183 (1983), 311–341. MR 0706391 |
Reference:
|
[2] Bamberger A.: Etude d’une équation doublement non linéaire.J. Funct. Anal. 24 (1977), 148–155. Zbl 0345.35059, MR 0470490 |
Reference:
|
[3] Blanchard D., Francfort G.: Study of doubly nonlinear heat equation with no growth assumptions on the parabolic term.Siam. J. Anal. Math. 9 (5), (1988), 1032–1056. MR 0957665 |
Reference:
|
[4] Diaz J., de Thelin F.: On a nonlinear parabolic problem arising in some models related to turbulent flows.Siam. J. Anal. Math. 25 (4), (1994), 1085–1111. Zbl 0808.35066, MR 1278892 |
Reference:
|
[5] Diaz J., Padial J. F.: Uniqueness and existence of solutions in the BV$_{t}(Q)$ space to a doubly nonlinear parabolic problem.Publ. Mat. 40 (1996), 527–560. MR 1425634 |
Reference:
|
[6] Eden A., Michaux B., Rakotoson J. M.: Doubly nonlinear parabolic type equations as dynamical systems.J. Dynam. Differential Equations 3 (1), (1991), 87–131. Zbl 0802.35011, MR 1094725 |
Reference:
|
[7] Eden A., Michaux B., Rakotoson J. M.: Semi-discretized nonlinear evolution equations as discrete dynamical systems and error analysis.Indiana Univ. Math. J. 39 (3), (1990), 737–783. Zbl 0732.35037, MR 1078736 |
Reference:
|
[8] El Hachimi A., de Thelin F.: Supersolutions and stabilisation of the solutions of the equation $\ u_{t}-\triangle _{p}u=f(x,u)$, Part I.Nonlinear Anal., Theory Methods Appl. 12 (12), (1988), 1385–1398. MR 0972407 |
Reference:
|
[9] El Hachimi A., de Thelin F.: Supersolutions and stabilisation of the solutions of the equation $u_{t}-\triangle _{p}u=f(x,u)$, Part II.Publ. Mat. 35 (1991), 347–362. MR 1201561 |
Reference:
|
[10] El Ouardi H., de Thelin F.: Supersolutions and stabilization of the solutions of a nonlinear parabolic system.Publ. Mat. 33 (1989), 369–381. MR 1030974 |
Reference:
|
[11] El Ouardi H., El Hachimi A.: Existence and attractors of solutions for nonlinear parabolic systems.Electron. J. Qual. Theory Differ. Equ. 5 (2001), 1–16. MR 1873359 |
Reference:
|
[12] El Ouardi H., El Hachimi A.: Existence and regularity of a global attractor for doubly nonlinear parabolic equations.Electron. J. Differ. Equ. (45) (2002), 1–15. Zbl 0993.35021, MR 1907721 |
Reference:
|
[13] El Ouardi H., El Hachimi A.: Attractors for a class of doubly nonlinear parabolic systems.Electron. J. Qual. Theory Differ. Equ. (1) (2006), 1–15. Zbl 1085.35064, MR 2210533 |
Reference:
|
[14] Dung L.: Ultimate boundedness of solutions and gradients of a class of degenerate parabolic systems.Nonlinear Anal., Theory Methods Appl. 39 (2000), 157–171. MR 1722106 |
Reference:
|
[15] Dung L.: Global attractors and steady states for a class of reaction diffusion systems.J. Differential Equations 147 (1998), 1–29. MR 1632736 |
Reference:
|
[16] Lions J. L.: Quelques méthodes de résolution des problèmes aux limites non linéaires.Dunod, Paris 1969. Zbl 0189.40603, MR 0259693 |
Reference:
|
[17] Langlais M., Phillips D.: Stabilization of solution of nonlinear and degenerate evolution equatins.Nonlinear Anal., Theory Methods Appl. 9 (1985), 321–333. MR 0783581 |
Reference:
|
[18] Ladyzhznskaya O., Solonnikov V. A., Outraltseva N. N.: Linear and quasilinear equations of parabolic type.Trans. Amer. Math. Soc. XI, 1968. |
Reference:
|
[19] Marion M.: Attractors for reaction-diffusion equation: existence and estimate of their dimension.Appl. Anal. 25 (1987), 101–147. MR 0911962 |
Reference:
|
[20] Málek J., Pražák D.: Long time behaviour via the method of l-trajectories.J. Differential Equations 18 (2), (2002), 243–279. |
Reference:
|
[21] Miranville A.: Finite dimensional global attractor for a class of doubly nonlinear parabolic equations.Central European J. Math. 4 (1), (2006), 163–182. Zbl 1102.35023, MR 2213032 |
Reference:
|
[22] Foias C., Constantin P., Temam R.: Attractors representing turbulent flows.Mem. Am. Math. Soc. 314 (1985), 67p. Zbl 0567.35070, MR 0776345 |
Reference:
|
[23] Foias C., Temam R.: Structure of the set of stationary solutions of the Navier-Stokes equations.Commun. Pure Appl. Math. 30 (1977), 149–164. Zbl 0335.35077, MR 0435626 |
Reference:
|
[24] Simon J.: Régularité de la solution d’un problème aux limites non linéaire.Ann. Fac. Sci. Toulouse Math. (6),(1981), 247–274. MR 0658735 |
Reference:
|
[25] Schatzman M.: Stationary solutions and asymptotic behavior of a quasilinear parabolic equation.Indiana Univ. Math. J. 33 (1984), 1–29. MR 0726104 |
Reference:
|
[26] Raviart P. A.: Sur la résolution de certaines équations paraboliques non linéaires.J. Funct. Anal. 5 (1970), 299–328. Zbl 0199.42401, MR 0257585 |
Reference:
|
[27] Temam R.: Infinite dimensional dynamical systems in mechanics and physics.Appl. Math. Sci. 68, Springer-Verlag 1988. Zbl 0662.35001, MR 0953967 |
Reference:
|
[28] Tsutsumi M.: On solutions of some doubly nonlinear degenerate parabolic systems with absorption.J. Math. Anal. Appl. 132 (1988), 187–212. MR 0942364 |
. |