Previous |  Up |  Next

Article

Title: Commuting linear operators and algebraic decompositions (English)
Author: Gover, Rod A.
Author: Šilhan, Josef
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 43
Issue: 5
Year: 2007
Pages: 373-387
Summary lang: English
.
Category: math
.
Summary: For commuting linear operators $P_0,P_1,\dots ,P_\ell $ we describe a range of conditions which are weaker than invertibility. When any of these conditions hold we may study the composition $P=P_0P_1\cdots P_\ell $ in terms of the component operators or combinations thereof. In particular the general inhomogeneous problem $Pu=f$ reduces to a system of simpler problems. These problems capture the structure of the solution and range spaces and, if the operators involved are differential, then this gives an effective way of lowering the differential order of the problem to be studied. Suitable systems of operators may be treated analogously. For a class of decompositions the higher symmetries of a composition $P$ may be derived from generalised symmmetries of the component operators $P_i$ in the system. (English)
Keyword: commuting linear operators
Keyword: decompositions
Keyword: relative invertibility
MSC: 35A30
MSC: 53A30
MSC: 53A55
MSC: 53C25
idZBL: Zbl 1199.53020
idMR: MR2381783
.
Date available: 2008-06-06T22:51:56Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/108079
.
Reference: [1] Boyer C. P., Kalnins E. G., Miller W., Jr.: Symmetry and separation of variables for the Helmholtz and Laplace equations.Nagoya Math. J. 60 (1976), 35–80. Zbl 0314.33011, MR 0393791
Reference: [2] Cox D., Little J., O’Shea D.: Ideals, varieties, and algorithms. An introduction to computational algebraic geometry and commutative algebra.Second edition. Undergraduate Texts in Mathematics. Springer-Verlag, New York, 1997, xiv+536 pp. MR 1417938
Reference: [3] Eastwood M.: Higher symmetries of the Laplacian.Ann. of Math. 161 (2005), 1645–1665. Zbl 1091.53020, MR 2180410
Reference: [4] Eastwood M., Leistner T.: Higher Symmetries of the Square of the Laplacian.preprint math.DG/0610610. Zbl 1137.58014, MR 2384717
Reference: [5] Fefferman C., Graham C. R.: The ambient metric.arXiv:0710.0919.
Reference: [6] Gover A. R.: Laplacian operators and Q-curvature on conformally Einstein manifolds.Mathematische Annalen, 336 (2006), 311–334. Zbl 1125.53032, MR 2244375
Reference: [7] Gover A. R., Šilhan J.: Commuting linear operators and decompositions; applications to Einstein manifolds.Preprint math/0701377 , www.arxiv.org. Zbl 1195.47038, MR 2585804
Reference: [8] Graham C. R., Jenne R., Mason J. V., Sparling G. A.: Conformally invariant powers of the Laplacian, I: Existence.J. London Math. Soc. 46, (1992), 557–565. Zbl 0726.53010, MR 1190438
Reference: [9] Miller W., Jr.: Symmetry and separation of variables.Encyclopedia of Mathematics and its Applications, Vol. 4. Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1977, xxx+285 pp. Zbl 0368.35002, MR 0460751
.

Files

Files Size Format View
ArchMathRetro_043-2007-5_5.pdf 312.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo