Previous |  Up |  Next

Article

Title: Third boundary value problem for the heat equation. I. (English)
Author: Dont, Miroslav
Language: English
Journal: Časopis pro pěstování matematiky
ISSN: 0528-2195
Volume: 106
Issue: 4
Year: 1981
Pages: 376-394
.
Category: math
.
MSC: 35K05
idZBL: Zbl 0483.35039
idMR: MR637817
DOI: 10.21136/CPM.1981.108488
.
Date available: 2009-09-23T09:11:52Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/108488
.
Reference: [1] G. Anger: Funktionalanalytische Betrachtungen bei Differentialgleichungen unter Verwendung von Methoden der Potentialtheorie I.Akademie-Verlag, Berlin 1967. Zbl 0163.11901, MR 0230916
Reference: [2] Е. А. Бадерко: Применение метода поуаболических потенциалов к решению одной краевой задачи контактной теплопроизводности.Дифф. уравнения 6 (1970), 2200-2213. Zbl 1107.83313, MR 0301365
Reference: [3] M. Dont: On a heat potential.Czech. Math. J. 25 (1975), 84-109. Zbl 0304.35051, MR 0369918
Reference: [4] M. Dont: On a boundary value problem for the heat equation.Czech. Math. J. 25 (1975), 110-133. Zbl 0304.35052, MR 0369919
Reference: [5] M. Dont: A note on a heat potential and the parabolic variation.Čas. Pěst. Mat. 101 (1976) 28-44. Zbl 0325.35043, MR 0473536
Reference: [6] M. Dont: The heat and adjoint heat potentials.Čas. Pěst. Mat. 105 (1980), 199-203. Zbl 0417.31007, MR 0573112
Reference: [7] M. Dont: On the continuity of the heat potentials.Čas. Pěst. Mat. 106 (1981), 156-167. MR 0621179
Reference: [8] A. Friedman: Partial differential equations of parabolic type.Prentice-Hall, 1964. Zbl 0144.34903, MR 0181836
Reference: [9] M. Gevrey: Sur les équations aux dérivées du type parabolique.J. Math. Pures Appl., 9 (1913), 305-471; 10(1914), 105-148.
Reference: [10] J. Král: Theory of potential I.(Czech). SPN Praha 1965.
Reference: [11] J. Král: On the logarithmic potential of the double distribution.Czech. Math. J. 14 (89) 1964, 306-321. MR 0180690
Reference: [12] J. Král: The Fredholm radius of an operator in potential theory.Czech. Math. J. 15 (90) 1965, 454-473; 565-588. MR 0190363
Reference: [13] J. Král: The Fredholm method in potential theory.Trans. A. M. S. 125 (1966), 511-547, MR 0209503
Reference: [14] J. Král: Flows of heat.Atti Accad. Naz. Lincei, Rend. Cl. fis. mat. e nat. 46 (1969), fasc. 2 60-63. MR 0254440
Reference: [15] J. Král: Flows of heat and the Fourier problem.Czech. Math. J. 20 (1970), 556-598. MR 0271554
Reference: [16] J. Král: A note on the Robin problem in potential theory.Comment. Math. Univ. Carolinae 14 (1973), 767-771. MR 0333219
Reference: [17] J. Král: Potentials and boundary value problems.5. Tagung über Probléme und Methoden der Mathematischen Physik. Wissenschaftliche Schriftenreihe der Technischen Hochschule Karl-Marx-Stadt 1975, 484-500. MR 0430272
Reference: [18] J. Král: Heat sources and heat potentials.Preprint.
Reference: [19] J. Král J. Lukeš: On the modified logarithmic potential.Czech. Math. J. 21 (1971), 76-98. MR 0277740
Reference: [20] J. Král J. Lukes: Integrals of the Cauchy type.Czech. Math. J. 22 (1972), 663-682. MR 0338377
Reference: [21] J. Král L. Netuka: Contractivity of C. Neumann's operator in potential theory.J. Math, Anal. Appl. 61 (1977), 607-619. MR 0508010
Reference: [22] J. Král I. Netuka J. Veselý: Theory of potential II, III, IV (Czech).SPN, Praha 1972,1976, 1977.
Reference: [23] С. Т. Михнин: Интегральные уравнения и их приложения к некоторым проблемам механики, математической физики и техники.ГИИТЛ, Москва, 1949. Zbl 1152.51302
Reference: [24] G. Miranda: Integral equation solution of the first initial-boundary value problem for the heat equation in domains with non-smooth boundary.Comm. Pure. Appl. Math. 23 (1970), 757-765. MR 0265785
Reference: [25] S. Mrzena: Continuity of heat potentials (Czech).Praha, 1976.
Reference: [26] Ch. H.Müntz: Zum dynamischen Warmeleitusproblem.Math. Z. 38 (1933), 323-337. MR 1545454
Reference: [27] I. Netuka: The Robin problem in potential theory.Comment. Math. Univ. Carolinae 12 (1971), 205-211. Zbl 0215.42602, MR 0287021
Reference: [28] I. Netuka: Generalized Robin problem in potential theory.Czech. Math. J. 22 (1972), 312-324. Zbl 0241.31008, MR 0294673
Reference: [29] I. Netuka: An operator connected with the third boundary value problem in potential theory.Czech. Math. J. 22 (1972), 462-489. Zbl 0241.31009, MR 0316733
Reference: [30] I. Netuka: The third boundary value problem in potential theory.Czech, Math. J. 22 (1972), 554-580. Zbl 0242.31007, MR 0313528
Reference: [31] I. Netuka: A mixed boundary value problem for heat potentials.Comment, Math. Univ. Carolinae 19 (1978), 207-211. Zbl 0388.35029, MR 0481054
Reference: [32] I. Netuka: Heat potentials and the mixed boundary value problem for the heat equation (Czech).Praha, 1977.
Reference: [33] W. Pogorzelski: Sur la solution de l'equation integrate dans le probleme de Fourier.Ann. Soc. Polon. Math. 24 (1951), 56-74. MR 0049468
Reference: [34] W. Pogorzelski: Integral equations and their applications.Pergamon Press, Oxford, 1966. Zbl 0137.30502, MR 0201934
Reference: [35] F. Riesz B. Sz. Nagy: Lecons d'analyse fonctionnelle.Budapest, 1952.
Reference: [36] А. Тихонов: Об уравнении теплопроводности для нескольких переменных.Бюлетин Моск. Гос. Унив. 1 (1938), 1-45. Zbl 0063.01977
Reference: [37] A. Tichonov A. Samarskij: Equations of mathematical physics (Czech).Praha, 1955.
Reference: [38] J. Veselý: On the heat potential of the double distribution.Čas. Pěst. Mat. 98 (1973), 181-198. MR 0324058
Reference: [39] J. Veselý: On a generalized heat potential.Czech. Math. J. 25 (1975), 404-423. MR 0390260
.

Files

Files Size Format View
CasPestMat_106-1981-4_7.pdf 1.372Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo