Previous |  Up |  Next

Article

Title: A maximum problem for operators (English)
Author: Pták, Vlastimil
Language: English
Journal: Časopis pro pěstování matematiky
ISSN: 0528-2195
Volume: 109
Issue: 2
Year: 1984
Pages: 168-193
.
Category: math
.
MSC: 47A30
idZBL: Zbl 0547.47004
idMR: MR744874
DOI: 10.21136/CPM.1984.108502
.
Date available: 2009-09-23T09:25:37Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/108502
.
Reference: [1] R. G. Douglas: Banach algebra techniques in operator theory.Academic Press 1972. Zbl 0247.47001, MR 0361893
Reference: [2] J. Mařík V. Pták: Norms, spectra and combinatorial properties of matrices.Czech. Math. J. 85 (1960), 181-196. MR 0120243
Reference: [3] H. K. Huкольский: Лекции об операторе сдвига.Mocквa 1980. Zbl 0611.73064
Reference: [4] V. Pták: Norms and the spectral radius of matrices.Czech. Math. J. 87 (1962), 553 - 557. MR 0146190
Reference: [5] V. Pták: Rayon spectral, norme des itérés d'un opérateur et exposant critique.C. R. Acad. Sci. Paris 265 (1967), 267-269. Zbl 0162.45604, MR 0220090
Reference: [6] V. Pták: Spectral radius, norms of iterates and the critical exponent.Lin. Alg. Appl. 1 (1968), 245-260. MR 0230744
Reference: [7] V. Pták: Isometric parts of operators and the critical exponent.Časopis pro pěst. mat. 101 (1976), 383-388. MR 0458214
Reference: [8] V. Pták: Universal estimates of the spectral radius.Proceedings of the semester on spectral theory. Banach Center Publ., vol. 8, (Spectral Theory) (1982), 373-387. MR 0738301
Reference: [9] V. Pták: An infinite companion matrix.Comm. Math. Univ. Carol. 19 (1978), 447-458. MR 0508953
Reference: [10] V. Pták: A lower bound for the spectral radius.Proc. Amer. Math. Soc. 80 (1980), 435-440. MR 0580999
Reference: [11] V. Pták: A maximum problem for matrices.Lin. Alg. Appl. 28 (1979), 193 - 204. MR 0549433
Reference: [12] V. Pták N. I. Young: Functions of operators and the spectral radius.Lin. Alg. Appl. 29 (1980), 357-392. MR 0562769
Reference: [13] V. Pták N. J. Young: A generalization of the zero location theorem of Schur and Cohn.IEEE Trans, on Automatic Control AC-25 (1980), 978-980. MR 0595237
Reference: [14] V. Pták: An equation of Lyapunov type.Lin. Alg. Appl. 39 (1981), 73 - 82. MR 0625238
Reference: [15] V. Pták: The discrete Lyapunov equation in controllable canonical form.IEEE Trans, on Automatic Control, AC-26 (1981), 580-581. MR 0613587
Reference: [16] V. Pták N. J. Young: Zero location by Hermitian forms: the singular case.Lin. Alg. Appl. 43(1982), 181-196. MR 0656444
Reference: [17] V. Pták: Critical Exponents.Proc. of the Fourth Conference on Operator Theory. Timisoara 1979, 320-329.
Reference: [18] V. Pták: Biorthogonal systems and the infinite companion matrix.Lin. Alg. Appl. 49 (1983), 57-78. MR 0688376
Reference: [19] V. Pták: Lyapunov Equations and Gram Matrices.Lin. Alg. Appl. 49 (1983), 33 - 55. MR 0688375
Reference: [20] V. Pták: Uniqueness in the first maximum problem.Manuscripts Math., 42(1983), 101-104. MR 0693423
Reference: [21] D. Sarason: Generalized interpolation in H∞.Trans. Amer. Math. Soc. 127 (1967), 179-203. Zbl 0145.39303, MR 0208383
Reference: [22] B. Sz-Nagy: Sur la norme des functions de certains operateurs.Acta Math. Acad. Sci. Hungar. 20 (1969), 331-334. MR 0256200
.

Files

Files Size Format View
CasPestMat_109-1984-2_7.pdf 1.577Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo