Previous |  Up |  Next

Article

Title: The spectrum of the $6$-Laplacian on Kähler manifolds (English)
Title: Spektrum $6$-Laplaciánu na Kählerových varietách (Czech)
Author: Puta, Mircea
Author: Török, Andrei
Language: English
Journal: Časopis pro pěstování matematiky
ISSN: 0528-2195
Volume: 113
Issue: 3
Year: 1988
Pages: 246-251
Summary lang: English
Summary lang: Czech
Summary lang: Russian
.
Category: math
.
MSC: 53C55
idZBL: Zbl 0654.53063
idMR: MR960761
DOI: 10.21136/CPM.1988.108783
.
Date available: 2009-09-23T09:47:37Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/108783
.
Reference: [1] V. K. Patodi: Curvature and the fundamental solution of the heat operator.J. Indian Math. Soc. 34 (1970), 269-285. MR 0488181
Reference: [2] M. Puta: The spectrum of the Laplacian for 5-forms.Expo. Math. 3 (1985), 75-79. Zbl 0553.58035, MR 0783147
Reference: [3] H. Strese: Zum Spectrum des Laplace Operators auf p-Formen.Math. Nachr. 106 (1982), 35-40. MR 0675742
Reference: [4] S. Tanno: Eigenvalues of the Laplacian of Riemannian manifolds.Tohoku Math. J. 25 (1973), 391-403. Zbl 0266.53033, MR 0334086
Reference: [5] S. Tanno: The spectrum of the Laplacian for 1-forms.Proc. Amer. Math. Soc. 45 (1974), 125-129. Zbl 0258.53060, MR 0343321
Reference: [6] G. Tsagas C. Kockinos: The geometry and the Laplace operator on the exterior 2-forms on a compact Riemannian manifold.Proc. Amer. Math. Soc. 73 (1979), 109-116. MR 0512069
.

Files

Files Size Format View
CasPestMat_113-1988-3_3.pdf 734.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo