Previous |  Up |  Next

Article

Keywords:
stable point; stable unit ball; extreme point; Orlicz space
Summary:
The aim of this paper is to investigate stability of unit ball in Orlicz spaces, endowed with the Luxemburg norm, from the ``local'' point of view. Firstly, those points of the unit ball are characterized which are stable, i.e., at which the map $z\rightarrow \{(x,y):\frac{1}{2}(x+y)=z\}$ is lower-semicontinuous. Then the main theorem is established: An Orlicz space $L^{\varphi }(\mu )$ has stable unit ball if and only if either $L^{\varphi }(\mu )$ is finite dimensional or it is isometric to $L^{\infty }(\mu )$ or $\varphi $ satisfies the condition $\Delta _r$ or $\Delta _r^0$ (appropriate to the measure $\mu $ and the function $\varphi $) or $c(\varphi )<\infty , \varphi (c(\varphi ))<\infty $ and $\mu (T)<\infty $. Finally, it is proved that the set of all stable points of norm one is dense in the unit sphere $S(L^{\varphi }(\mu ))$.
References:
[1] Clausing A., Papadopoulou S.: Stable convex sets and extreme operators. Math. Ann. 231 (1978), 193-200. MR 0467249
[2] Engelking R.: General Topology. Polish Scientific Publishers, Warsaw, 1977. MR 0500780 | Zbl 0684.54001
[3] Grząślewicz R.: Finite dimensional Orlicz spaces. Bull. Acad. Polon. Sci.: Math. 33 (1985), 277-283. MR 0816376
[4] Lazar A.J.: Affine functions on simplexes and extreme operators. Israel J. Math. 5 (1967), 31-43. MR 0211246 | Zbl 0149.08703
[5] Lima Å.: On continuous convex functions and split faces. Proc. London Math. Soc. 25 (1972), 27-40. MR 0303243 | Zbl 0236.46024
[6] Luxemburg W.A.J.: Banach function spaces. Thesis, Delft, 1955. MR 0072440 | Zbl 0162.44701
[7] Michael E.: Continuous selections I. Ann. of Math. (2) 63 (1956), 361-382. MR 0077107 | Zbl 0071.15902
[8] Musielak J.: Orlicz spaces and modular spaces. Lecture Notes in Math. 1034, Springer Verlag, 1983. MR 0724434 | Zbl 0557.46020
[9] O'Brien R.C.: On the openness of the barycentre map. Math. Ann. 223 (1976), 207-212. MR 0420221 | Zbl 0321.46004
[10] Orlicz W.: Über eine gewisse Klasse von Räumen vom Typus B. Bull. Intern. Acad. Pol., série A, Kraków, 1932, 207-220. Zbl 0006.31503
[11] Papadopoulou S.: On the geometry of stable compact convex sets. Math. Ann. 229 (1977), 193-200. MR 0450938 | Zbl 0339.46001
[12] Suarez-Granero A.: Stable unit balls in Orlicz spaces. Proc. Amer. Math. Soc. 109, 1 (1990), 97-104. MR 1000154 | Zbl 0722.46014
[13] Vesterstrøm J.: On open maps, compact convex sets and operator algebras. J. London Math. Soc. 6 (1973), 289-297. MR 0315464
[14] Wisła M.: Extreme points and stable unit balls in Orlicz sequence spaces. Archiv der Math. 56 (1991), 482-490. MR 1100574
[15] Wisła M.: Stable unit balls in finite dimensional generalized Orlicz spaces. Proceedings of the Second Conference ``Function Spaces'', Poznań, 1989, Teubner Texte zur Mathematik, to appear. MR 1155158
[16] Wisła M.: Continuity of the identity embedding of Musielak-Orlizc sequence spaces. Proc. of the 14th Winter School on Abstract Analysis, Srní, 1986, Supp. ai Rendiconti del Circolo Mat. di Palermo 14 (1987), 427-437. MR 0920876
Partner of
EuDML logo