Previous |  Up |  Next

Article

References:
[1] H. H. Axueзep И. M. Глазман: Теория ядерных операторов в гильбертовом пространстве. Mocква 1950.
[2] C. Derman: A solution to a set of fundamental equations in Markov chains. Proc. Amer. Math. Soc. 5 (1954), 332-334. MR 0060757 | Zbl 0058.34504
[3] N. Dunford J. T. Schwartz: Linear operators I. New York 1958.
[4] W. Feller: An introduction to probability theory and its applications. New York 1950. Zbl 0039.13201
[5] W. Feller: Boundaries induced by non-negative matrices. Trans. Amer. Math. Soc. 83 (1956), 19-54. MR 0090927 | Zbl 0071.34901
[6] E. Hille R. S. Phillips: Functional analysis and semi-groups. Providence 1957. MR 0089373
[7] S. Karlin: Positive operators. J. Math. Mech. 8 (1959), 907-938. MR 0114138 | Zbl 0087.11002
[8] S. Karlin J. McGregor: Random walks. Illinois J. Math. 3 (1959), 66-81. MR 0100927
[9] Ф. И. Карпелевич: O характеристических корнях матриц с неотрицательными элементами. Изд. AH CCCP, cep. mаt., 15 (1951), 361-383. MR 0043063 | Zbl 0084.26103
[10] D. G. Kendall: Unitary dilations of Markov transition operators, and the corresponding integral representations for transition-probability matrices. Probability & Statistics, The Harald Cramér Volume, New York 1959, 139-161. MR 0116389 | Zbl 0117.35801
[11] E. Nelson: The adjoint Markoff process. Duke Math. J. 25 (1958), 671 - 690. MR 0101555 | Zbl 0084.13402
[12] Z. Šidák: Integral representations for transition probabilities of Markov chains with a general state space. Czech. Math. J. 12 (87) (1962), 492-522. MR 0148115
[13] Z. Šidák: Eigenvalues of operators in denumerable Markov chains. Trans. Third Prague Conf. on Inf. Theory, Stat. Dec. Functions, Random Proc. 1962, Prague 1963. MR 0153052
Partner of
EuDML logo