[1] H. H. Axueзep И. M. Глазман: Теория ядерных операторов в гильбертовом пространстве. Mocква 1950.
[2] C. Derman:
A solution to a set of fundamental equations in Markov chains. Proc. Amer. Math. Soc. 5 (1954), 332-334.
MR 0060757 |
Zbl 0058.34504
[3] N. Dunford J. T. Schwartz: Linear operators I. New York 1958.
[4] W. Feller:
An introduction to probability theory and its applications. New York 1950.
Zbl 0039.13201
[5] W. Feller:
Boundaries induced by non-negative matrices. Trans. Amer. Math. Soc. 83 (1956), 19-54.
MR 0090927 |
Zbl 0071.34901
[6] E. Hille R. S. Phillips:
Functional analysis and semi-groups. Providence 1957.
MR 0089373
[8] S. Karlin J. McGregor:
Random walks. Illinois J. Math. 3 (1959), 66-81.
MR 0100927
[9] Ф. И. Карпелевич:
O характеристических корнях матриц с неотрицательными элементами. Изд. AH CCCP, cep. mаt., 15 (1951), 361-383.
MR 0043063 |
Zbl 0084.26103
[10] D. G. Kendall:
Unitary dilations of Markov transition operators, and the corresponding integral representations for transition-probability matrices. Probability & Statistics, The Harald Cramér Volume, New York 1959, 139-161.
MR 0116389 |
Zbl 0117.35801
[12] Z. Šidák:
Integral representations for transition probabilities of Markov chains with a general state space. Czech. Math. J. 12 (87) (1962), 492-522.
MR 0148115
[13] Z. Šidák:
Eigenvalues of operators in denumerable Markov chains. Trans. Third Prague Conf. on Inf. Theory, Stat. Dec. Functions, Random Proc. 1962, Prague 1963.
MR 0153052