[1] Dunford N, Schwartz J. T.:
Nonlinear operators. New York, Interscience Publishers, 1958.
MR 0117523
[2] Fucik S.:
Nonlinear equations with noninvertible linear part. Czech. Math. Jour. 24 (1974), 467-495.
MR 0348568 |
Zbl 0315.47038
[3] Hess P.:
On the Fredholm alternative for nonlinear functional equations in Banach-spaces. Proc. Amer. Math. Soc. 33 (1972) I, 55-62.
MR 0301585 |
Zbl 0249.47064
[4] Hess P.:
On a theorem by Landesman and Lazer. Indiana Univ. Math. J., 23 (1973/74), 827-29.
MR 0352687
[5] Landesman E. A., Lazer A. C:
Nonlinear perturbations of linear elliptic boundary value problems at resonance. Jour. Math. Mech. 19 (1970), 609-623.
MR 0267269 |
Zbl 0193.39203
[6] Lions J. L.:
Quelques méthodes de la résolution des problèmes aux limites non linéaires. Dunod Gauthier-Villars, Paris 1969.
MR 0259693
[7] Mawhin J.:
Equivalence theorems for nonlinear operator equations and coincidence degree theory for some mappings in locally convex topological vector spaces. J. Differential Equations 12 (1972), 610-636.
MR 0328703 |
Zbl 0244.47049
[8] Nečas J.:
On the range of nonlinear operators with linear asymptotes which are not invertible. Comm. Math. Univ. Carolinae 14, 1 (1973), 63-72.
MR 0318995
[9] Nečas J.:
Remark on the Fredholm alternative for nonlinear operators with application to nonlinear integral equations of generalised Hammerstein type. Comm. Math. Univ. Carolinae 13, 1 (1972), 109-120.
MR 0305171
[10] Williams S. A.:
A sharp sufficient condition for solution of a nonlinear elliptic boundary value problem. J. Differential Equations 8 (1970), 580-586.
MR 0267267 |
Zbl 0209.13003
[11] Yosida K:
Functional analysis. Berlin, Springer Verlag, 1971.
Zbl 0217.16001
[12] Fučík S., Kučera M., Nečas J.:
Ranges of nonlinear asymptotically linear operators. J. Differential Equations 17 (1975), 375-394.
MR 0372696