[1] H. Bauer: 
Harmonische Raume und ihre Potentialtheorie. Springer Verlag, Berlin, 1966. 
MR 0210916[2] Ch. Berg: 
Quelques proprietes de la topologie fine dans la theorie du potentiel et des processus standard. Bull. Sci. Math. 95 (1971), 27-31. 
MR 0280733[3] C. Constantinescu, A. Cornea: 
Potential theory on harmonic spaces. Springer Verlag, Berlin, 1972. 
MR 0419799 | 
Zbl 0248.31011[4] R.-M. Hervé: 
Recherches axiomatiques sur la theorie des fonctions surharmoniques et du/potentiel. Ann. Inst. Fourier I2 (1962), 415-571. 
MR 0139756[5] J. M. Landis: 
Equations of the second order of elliptic and parabolic types. (Russian), Nauka, Moscow, 1971. 
MR 0320507[6] P. A. Loeb: 
An axiomatic treatment of pairs of elliptic differential equations. Ann. Inst. Fourier I6, 2 (1966), 167-208. 
MR 0227455 | 
Zbl 0172.15101[7] J. Lukeš, I. Netuka: 
The Wiener type solution of the Dirichlet problem in potential theory. Math. Ann. 224 (1976), 173-178. 
MR 0422652[8] N. Wiener: Certain notions in potential theory. J. Math. Massachussetts 3 (1924), 24-51.