Previous |  Up |  Next

Article

Title: On the monotonicity of the period function of some second order equations (English)
Author: Chow, Shui-Nee
Author: Wang, Duo
Language: English
Journal: Časopis pro pěstování matematiky
ISSN: 0528-2195
Volume: 111
Issue: 1
Year: 1986
Pages: 14-25
.
Category: math
.
MSC: 34C25
idZBL: Zbl 0603.34034
idMR: MR833153
DOI: 10.21136/CPM.1986.118260
.
Date available: 2009-09-23T09:35:05Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/118260
.
Reference: [1] V. I. Arnold: Geometric Methods in the Theory of Ordinary Differential Equations.Springer-Verlag, N.Y., 1983. MR 0695786
Reference: [2] J. Carry S.-N. Chow, J. K. Hale: Abelian integrals and bifurcation theory.J. Diff. Eqn., 59(1985), 413-436. MR 0807855
Reference: [3] S.-N. Chow, J. K. Hale: Methods of Bifurcation Theory.Springer-Verlag, N.Y., 1982. Zbl 0487.47039, MR 0660633
Reference: [4] S.-N. Chow, J. A. Sanders: On the number of critical points of the period.to appear. Zbl 0594.34028, MR 0849664
Reference: [5] W. S. Loud: Periodic solution of x" + cx + g(x) = ε f(t).Mem. Amer. Math. Soc., No. 31 (1959), 1-57. MR 0107058
Reference: [6] C. Obi: Analytical theory of nonlinear oscillation, VII, The periods of the periodic solutions of the equation x" + g(x) = 0.J. Math. Anal. Appl. 55 (1976), 295-301. MR 0460796
Reference: [7] Z. Opial: Sur les periodes des solutions de Pequation differentielle x" + g(x) - 0.Ann. Pol. Math. 10 (1961), 49-72. MR 0121544
Reference: [8] R. Schaaf: Global behavior of solution branches for some Neumann problems depending on one or several parameters.to appear. MR 0727393
Reference: [9] D. Wang: On the existence of 2π-periodic solutions of differential equation x" + g(x) = p(t).Chin. Ann. Math., 5A(1) (1984), 61-72. MR 0743783
.

Files

Files Size Format View
CasPestMat_111-1986-1_2.pdf 541.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo