Previous |  Up |  Next

Article

References:
[1] F. V. Atkinson C. Bennewitz W. N. Everitt, D. Race: The Titchmarsh-Weyl m-coefficient; a survey of properties and applications. (In preparation).
[2] C. Bennewitz, W. N. Everitt: Some remarks on the Titchmarsh-Weyl m-coefficient. Tгibute to Åke Pleijel (Proceedings of the Pleijel Conference, Uppsala, 1979), 49-108. Uppsala, Sweden; Depaгtтent of Mathematics, University of Uppsala.
[3] W. N. Everitt: A note on the Dirichlet condition for second-order differential expressions. Can. J. Math. 28 (1976), 312-320. MR 0430391 | Zbl 0338.34011
[4] W. N. Everitt: A note on an integral inequality. Quaestiones Mathematicae 2 (1978), 461-478. MR 0486760 | Zbl 0396.26005
[5] W. N. Everitt: On the transformation theoгy of ordinary second-order linear symmetric differential equations. Czech. Math. J. 32 (1982), 275-306. MR 0654062
[6] W. N. Everitt M. Giertz, J. B. McLeod: On the strong and weak limit-point classification of second-order differential expressions. Pгoc. London. Math. Soc. (3) 29 (1974), 142-158. MR 0361255
[7] W. IV. Everitt M. Giertz, J. Weidmann: Some remrks on a separation and limit-point criterion of second-order ordinary differential expressions. Math. Ann. 200 (1973), 335-346. MR 0326047
[8] W. N. Everitt, S. G. Halvorsen: On the asymptotic foгm of the Titchmarsh-Weyl m-coefficient. Applicable Analysis 9 (1978), 153-169. MR 0523952
[9] W. N. Everitt, S. D. Wray: On quadratic integral inequalities associated with second-order symmetric differential expressions. Lecture Notes in Mathematics 1032 (1983), 170-223. Вerlin, Ѕpringer-Verlag. MR 0742640 | Zbl 0556.26006
[10] S. G. Halvorsen: Personal Communication in 1983.
[11] H. Kalf: Remarks on some Dirichlet-type results for semi-bounded Ѕturm-Liouville operators. Math. Ann. 210 (1974), 192-205. MR 0355177
[12] E. C. Titchmarsh: Eigenfunction expansions I. (Oxford University Press: 1962). MR 0176151
[13] H. Weyl: Über gewöhnliche Differentialgleichungen mit Ѕingularitäten und die zugehörigen Entwicklungen willkürlicher Funktionen. Math. Ann. 68 (1910), 220-269. MR 1511560
Partner of
EuDML logo