Previous |  Up |  Next

Article

Title: Invariant manifolds and the concept of asymptotic phase (English)
Author: Aulbach, Bernd
Author: Flockerzi, Dietrich
Author: Knobloch, Hans-Wilhelm
Language: English
Journal: Časopis pro pěstování matematiky
ISSN: 0528-2195
Volume: 111
Issue: 2
Year: 1986
Pages: 156-176
.
Category: math
.
MSC: 34C45
idZBL: Zbl 0621.34037
idMR: MR847315
DOI: 10.21136/CPM.1986.118274
.
Date available: 2009-09-23T09:36:43Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/118274
.
Reference: [1] B. Aulbach: A reduction principle for nonautonomous differential equations.Arch. Malh. 39 (1982), 217-232. Zbl 0521.34049, MR 0682449
Reference: [2] E. A. Coddington, N. Levinson: Theory of ordinary differential equations.McGraw-Hill, New York 1955. Zbl 0064.33002, MR 0069338
Reference: [3] J. K. Hale: Ordinary differential equations.Wiley-Interscience. New York 1969. Zbl 0186.40901, MR 0419901
Reference: [4] P. Hartman: Ordinary differential equations.Wiley & Sons, New York 1964. Zbl 0125.32102, MR 0171038
Reference: [5] A. Kelley: Stability of the center-stable manifold.Ј. Math. Аnal. Аppl. 18 (1967), 336-344. Zbl 0166.08304, MR 0210998
Reference: [6] H. W. Knobloch, F. Kappel: Gewöhnliche Differentialgleichungen.Teubner, Stuttgart 1974. Zbl 0283.34001, MR 0591708
Reference: [7] K. Palmer: Qualitative behavior of a system of ODE near an equilibrium point - А generalization of the Hartman-Grobman theorem.Preprint 372, Inst. f. Аngew. Mathem. Univ. Вonn 1980.
Reference: [8] V. A. Pliss: Principleof reduction in the theory of the stability of motion.Izv. Аkad. Nauk SSSR, Mat. Ser. 28 (1964), 1297-1324 (in Russian). MR 0190449
Reference: [9] S. M. Graff: On the conservation of hyperbolic invariant tori for Hamiltonian systems.Јourn. Diff. Equations 15 (1974), 1-69. Zbl 0257.34048, MR 0365626
.

Files

Files Size Format View
CasPestMat_111-1986-2_6.pdf 1.150Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo