Previous |  Up |  Next

Article

Title: Periodic solutions for third order ordinary differential equations (English)
Author: Nieto, Juan J.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 32
Issue: 3
Year: 1991
Pages: 495-499
.
Category: math
.
Summary: In this paper, we introduce the concept of upper and lower solutions for third order periodic boundary value problems. We show that the monotone iterative technique is valid and obtain the extremal solutions as limits of monotone sequences. We first present a new maximum principle for ordinary differential inequalities of third order that is interesting by itself. (English)
Keyword: periodic solution
Keyword: maximum principle
Keyword: upper and lower solutions
Keyword: monotone method
MSC: 34B15
MSC: 34C25
idZBL: Zbl 0832.34028
idMR: MR1159797
.
Date available: 2009-01-08T17:46:30Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118430
.
Reference: [1] Aftabizadeh A.R., Gupta C.P., Xu J.M.: Existence and uniqueness theorems for three-point boundary value problems.SIAM J. Math. Anal. 20 (1989), 716-726. Zbl 0704.34019, MR 0990873
Reference: [2] Aftabizadeh A.R., Gupta C.P., Xu J.M.: Periodic boundary value problems for third order ordinary differential equations.Nonlinear Anal. 14 (1990), 1-10. Zbl 0706.34018, MR 1028242
Reference: [3] Afuwape A.U., Omari P., Zanolin F.: Nonlinear perturbations of differential operators with nontrivial kernel and applications to third-order periodic boundary value problems.J. Math. Anal. Appl. 143 (1989), 35-56. Zbl 0695.47044, MR 1019448
Reference: [4] Afuwape A.U., Zanolin F.: An existence theorem for periodic solutions and applications to some third order nonlinear differential equations.preprint.
Reference: [5] Agarwal R.P.: Boundary Value Problems for Higher Order Differential Equations.World Scientific, Singapore, 1986. Zbl 0921.34021, MR 1021979
Reference: [6] Agarwal R.P.: Existence-uniqueness and iterative methods for third-order boundary value problems.J. Comp. Appl. Math. 17 (1987), 271-289. Zbl 0617.34008, MR 0883170
Reference: [7] Cabada A., Nieto J.J.: A generalization of the monotone iterative technique for nonlinear second order periodic boundary value problems.J. Math. Anal. Appl. 151 (1990), 181-189. Zbl 0719.34039, MR 1069454
Reference: [8] Ezeilo J.O.C., Nkashama M.N.: Resonant and nonresonant oscillations for some third order nonlinear ordinary differential equations.Nonlinear Anal. 12 (1988), 1029-1046. Zbl 0676.34021, MR 0962767
Reference: [9] Gregus M.: Third Order Linear Differential Equations.D. Reidel, Dordrecht, 1987. Zbl 0602.34005, MR 0882545
Reference: [10] Ladde G.S., Lakshmikantham V., Vatsala A.S.: Monotone Iterative Techniques for Nonlinear Differential Equations.Pitman, Boston, 1985. Zbl 0658.35003, MR 0855240
Reference: [11] Lakshmikantham V., Nieto J.J., Sun Y.: An existence result about periodic boundary value problems of second order differential equations.Appl. Anal., to appear. MR 1121320
Reference: [12] Nieto J.J.: Nonlinear second order periodic boundary value problems.J. Math. Anal. Appl. 130 (1988), 22-29. Zbl 0678.34022, MR 0926825
Reference: [13] Rudolf B., Kubacek Z.: Remarks on J. J. Nieto's paper: Nonlinear second order periodic boundary value problems.J. Math. Anal. Appl. 146 (1990), 203-206. Zbl 0713.34015, MR 1041210
Reference: [14] Temam R.: Infinite-Dimensional Dynamical Systems in Mechanics and Physics.Springer-Verlag, New York, 1988. Zbl 0871.35001, MR 0953967
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_32-1991-3_11.pdf 171.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo