Title:
|
Biequivalence vector spaces in the alternative set theory (English) |
Author:
|
Šmíd, Miroslav |
Author:
|
Zlatoš, Pavol |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
32 |
Issue:
|
3 |
Year:
|
1991 |
Pages:
|
517-544 |
. |
Category:
|
math |
. |
Summary:
|
As a counterpart to classical topological vector spaces in the alternative set theory, biequivalence vector spaces (over the field $Q$ of all rational numbers) are introduced and their basic properties are listed. A methodological consequence opening a new view towards the relationship between the algebraic and topological dual is quoted. The existence of various types of valuations on a biequivalence vector space inducing its biequivalence is proved. Normability is characterized in terms of total convexity of the monad and/or of the galaxy of $0$. Finally, the existence of a rather strong type of basis for a fairly extensive area of biequivalence vector spaces, containing all the most important particular cases, is established. (English) |
Keyword:
|
alternative set theory |
Keyword:
|
biequivalence |
Keyword:
|
vector space |
Keyword:
|
monad |
Keyword:
|
galaxy |
Keyword:
|
symmetric Sd-closure |
Keyword:
|
dual |
Keyword:
|
valuation |
Keyword:
|
norm |
Keyword:
|
convex |
Keyword:
|
basis |
MSC:
|
03E70 |
MSC:
|
03H05 |
MSC:
|
46A04 |
MSC:
|
46A06 |
MSC:
|
46A08 |
MSC:
|
46A09 |
MSC:
|
46A35 |
MSC:
|
46Q05 |
MSC:
|
46S20 |
idZBL:
|
Zbl 0756.03027 |
idMR:
|
MR1159799 |
. |
Date available:
|
2009-01-08T17:46:41Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/118431 |
. |
Reference:
|
[Dv 1977] Davis M.: Applied Nonstandard Analysis.Wiley Interscience, New York-London-Sydney. Zbl 0359.02060, MR 0505473 |
Reference:
|
[Dy 1940] Day M.M.: The spaces $L^p$ with $0< p< 1$.Bull. Amer. Math. Soc. 46 816-823. MR 0002700 |
Reference:
|
[En 1973] Enflo P.: A counterexample to the approximation problem in Banach spaces.Acta Math. 130 309-317. Zbl 0286.46021, MR 0402468 |
Reference:
|
[G-Z 1985a] Guričan J., Zlatoš P.: Biequivalences and topology in the alternative set theory.Comment. Math. Univ. Carolinae 26 525-552. MR 0817825 |
Reference:
|
[G-Z 1985b] Guričan J., Zlatoš P.: Archimedean and geodetical biequivalences.Comment. Math. Univ. Carolinae 26 675-698. MR 0831804 |
Reference:
|
[H-Mr 1972] Henson C.W., Moore L.C.: The nonstandard theory of topological vector spaces.Trans. Amer. Math. Soc. 172 405-435. Zbl 0274.46013, MR 0308722 |
Reference:
|
[H-Mr 1983a] Henson C.W., Moore L.C.: Nonstandard analysis and the theory of Banach spaces.in Hurd A.E. (ed.), ``Nonstandard Analysis - Recent Developments,'' Lecture Notes in Mathematics 983, pp. 27-112, Springer, Berlin-Heidelberg-New York-Tokyo. Zbl 0511.46070, MR 0698954 |
Reference:
|
[H-Mr 1983b] Henson C.W., Moore L.C.: The Banach spaces $\ell_p(n)$ for large $p$ and $n$.Manuscripta Math. 44 1-33. MR 0709841 |
Reference:
|
[K-Z 1988] Kalina M., Zlatoš P.: Arithmetic of cuts and cuts of classes.Comment. Math. Univ. Carolinae 29 435-456. MR 0972828 |
Reference:
|
[M 1979] Mlček J.: Valuations of structures.Comment. Math. Univ. Carolinae 20 525-552. MR 0555183 |
Reference:
|
[Rd 1982] Radyno Ya.V.: Linear Equations and Bornology (in Russian).Izdatelstvo Belgosuniversiteta, Minsk. MR 0685429 |
Reference:
|
[Rm 1980] Rampas Z.: Theory of matrices in the description of structures (in Czech).Master Thesis, Charles University, Prague. |
Reference:
|
[Rb-Rb 1964] Robertson A.P., Robertson W.J.: Topological Vector Spaces.Cambridge Univ. Press, Cambridge. Zbl 0423.46001, MR 0162118 |
Reference:
|
[Sn 1970] Singer I.: Bases in Banach Spaces I.Springer, Berlin-Heidelberg-New York. Zbl 0198.16601, MR 0298399 |
Reference:
|
[S-V 1980] Sochor A., Vopěnka P.: Revealments.Comment. Math. Univ. Carolinae 21 97-118. MR 0566243 |
Reference:
|
[V 1979] Vopěnka P.: Mathematics in the Alternative Set Theory.Teubner, Leipzig. MR 0581368 |
Reference:
|
[We 1976] Welsh D.J.A.: Matroid Theory.Academic Press, London-New York-San Francisco. Zbl 0343.05002, MR 0427112 |
Reference:
|
[Wi 1978] Wilansky A.: Modern Methods in Topological Vector Spaces.McGraw-Hill Int. Comp., New York-St.Louis. Zbl 0395.46001, MR 0518316 |
Reference:
|
[Z 1989] Zlatoš P.: Topological shapes.in Mlček J. et al. (eds.), ``Proc. of the $1^{st}$ Symposium on Mathematics in the Alternative Set Theory,'' pp. 95-120, Association of Slovak Mathematicians and Physicists, Bratislava. |
. |