Previous |  Up |  Next

Article

Title: Radicals which define factorization systems (English)
Author: Gardner, B. J.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 32
Issue: 4
Year: 1991
Pages: 601-607
.
Category: math
.
Summary: A method due to Fay and Walls for associating a factorization system with a radical is examined for associative rings. It is shown that a factorization system results if and only if the radical is strict and supernilpotent. For groups and non-associative rings, no radical defines a factorization system. (English)
Keyword: radical class
Keyword: factorization system
MSC: 16A21
MSC: 16N80
MSC: 16S90
MSC: 17A65
MSC: 18A20
MSC: 18E40
idZBL: Zbl 0752.16009
idMR: MR1159806
.
Date available: 2009-01-08T17:47:24Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118439
.
Reference: [1] Bousfield A.K.: Construction of factorization systems in categories.J. Pure Appl. Algebra 9 (1977), 207-220. MR 0478159
Reference: [2] Fay T.H.: Compact modules.Comm. Algebra 16 (1988), 1209-1219. Zbl 0653.16020, MR 0939039
Reference: [3] Fay T.H., Walls G.L.: Compact nilpotent groups.Comm. Algebra 17 (1989), 2255-2268. Zbl 0683.20028, MR 1016864
Reference: [4] Fay T.H., Walls G.L.: Categorically compact locally nilpotent groups.Comm. Algebra 18 (1990), 3423-3435. Zbl 0739.20012, MR 1063986
Reference: [5] Gardner B.J.: Some degeneracy and pathology in non-associative radical theory.Annales Univ. Sci. Budapest Sect. Math. 22-23 (1979-80), 65-74. Zbl 0447.17004, MR 0588424
Reference: [6] Gardner B.J.: Radical Theory.Longman, Harlow, 1989. Zbl 1169.16012, MR 1006673
Reference: [7] Herrlich H., Salicrup G., Strecker G.E.: Factorizations, denseness, separation, and relatively compact objects.Topology Appl. 27 (1987), 157-169. Zbl 0629.18003, MR 0911689
Reference: [8] Manes E.G.: Compact Hausdorff objects.General Topology Appl. 4 (1974), 341-360. Zbl 0289.54003, MR 0367901
Reference: [9] Mrówka S.: Compactness and product spaces.Colloq. Math. 7 (1959), 19-22. MR 0117704
Reference: [10] Puczylowski E.R.: On unequivocal rings.Acta Math. Acad. Sci Hungar. 36 (1980), 57-62. Zbl 0464.16005, MR 0605170
Reference: [11] Sands A.A.: On ideals in over-rings.Publ. Math. Debrecen 35 (1988), 273-279. Zbl 0688.16035, MR 1005290
Reference: [12] Stewart P.N.: Strict radical classes of associative rings.Proc. Amer. Math. Soc. 39 (1973), 273-278. Zbl 0244.16005, MR 0313296
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_32-1991-4_2.pdf 192.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo