[1] Browder F.E., Petryshyn V.W.: 
The solution by iteration of nonlinear functional equations in Banach spaces. Bull. AMS 72 (1966), 571-576. 
MR 0190745 | 
Zbl 0138.08202[2] Bynum W.L.: 
Normal structure coefficients for Banach spaces. Pacific J. Math. 86 (1980), 427-436. 
MR 0590555 | 
Zbl 0442.46018[3] Casini E., Maluta E.: 
Fixed points of uniformly Lipschitzian mappings in spaces with uniformly normal structure. Nonlinear Anal., TMA 9 (1985), 103-108. 
MR 0776365 | 
Zbl 0526.47034[4] Daneš J.: 
On densifying and related mappings and their applications in nonlinear functional analysis. in: Theory of Nonlinear Operators (Proc. Summer School, October 1972, GDR), Akademie-Verlag, Berlin, 1974, 15-56. 
MR 0361946[5] Downing D.J., Turett B.: 
Some properties of the characteristic convexity relating to fixed point theory. Pacific J. Math. 104 (1983), 343-350. 
MR 0684294[6] Edelstein M., O'Brien C.R.: 
Nonexpansive mappings, asymptotic regularity and successive approximations. J. London Math. Soc. (2) 17 (1978), 547-554. 
MR 0500642 | 
Zbl 0421.47031[7] Gillespie A.A., Williams B.B.: 
Fixed point theorem for nonexpansive mappings on Banach spaces with uniformly normal structure. Appl. Anal. 9 (1979), 121-124. 
MR 0539537[8] Górnicki J.: 
A fixed point theorem for asymptotically regular mappings. to appear. 
MR 1201441[9] Krüppel M.: 
Ein Fixpunktsatz für asymptotisch reguläre Operatoren in gleichmäßig konvexen Banach-Räumen. Wiss. Z. Pädagog. Hochsch. ``Liselotte Herrmann'' Güstrow, Math.-naturwiss. Fak. 25 (1987), 241-246. 
MR 0971250[10] Lin P.K.: 
A uniformly asymptotically regular mapping without fixed points. Canad. Math. Bull. 30 (1987), 481-483. 
MR 0919440 | 
Zbl 0645.47050[11] Yu X.T.: 
On uniformly normal structure. Kexue Tongbao 33 (1988), 700-702. 
Zbl 0681.46020[12] Yu X.T.: 
A geometrically aberrant Banach space with uniformly normal structure. Bull. Austral. Math. Soc. 38 (1988), 99-103. 
MR 0968233 | 
Zbl 0646.46017