Article
Keywords:
multivalued nonexpansive map; fixed points set; Mosco convergence
Summary:
Let $K$ be a closed convex subset of a Hilbert space $H$ and $T:K \multimap K$ a nonexpansive multivalued map with a unique fixed point $z$ such that $\{z\}=T(z)$. It is shown that we can construct a sequence of approximating fixed points sets converging in the sense of Mosco to $z$.
References:
                        
[1] Browder F.E.: 
Convergence of approximants to fixed points of nonexpansive nonlinear mappings in Banach spaces. Arch. Rational. Mech. Anal. 24 (1967), 82-90. 
MR 0206765 | 
Zbl 0148.13601[2] Reich S.: 
Strong convergence theorems for resolvents of accretive operators in Banach spaces. J. Math. Anal. Appl. 75 (1980), 287-292. 
MR 0576291 | 
Zbl 0437.47047[3] Singh S.P., Watson B.: 
On approximating fixed points. Proc. Symp. Pure Math. 45 (part 2) (1986), 393-395. 
MR 0843624 | 
Zbl 0597.47035[5] Ćirić L.B.: 
Fixed points for generalized multivalued contractions. Mat. Vesnik, N. Ser. 9 {(24)} (1972), 265-272. 
MR 0341460[6] Iséki K.: 
Multivalued contraction mappings in complete metric spaces. Math. Sem. Notes 2 (1974), 45-49. 
MR 0413070[7] Corley H.W.: 
Some hybrid fixed point theorems related to optimization. J. Math. Anal. Appl. 120 (1986), 528-532. 
MR 0864769 | 
Zbl 0631.47041[8] LamiDozo E.: 
Multivalued nonexpansive mappings and Opial's condition. Proc. Amer. Math. Soc. 38 (1973), 286-292. 
MR 0310718