[1] Bliedtner J., Hansen W.: 
Potential Theory. An Analytic and Probabilistic Approach to Balayage. Springer-Verlag, Berlin, 1986. 
MR 0850715 | 
Zbl 0706.31001[2] Borwein J.M., Théra M.: Sandwich Theorems for Semicontinuous Operators. preprint, 1990.
[3] Bourbaki N.: 
Topologie Générale, ch. IX. Hermann & Cie, Paris, 1948. 
MR 0027138[4] Constantinescu C., Cornea A.: 
Potential Theory on Harmonic Spaces. Springer-Verlag, Berlin, 1972. 
MR 0419799 | 
Zbl 0248.31011[5] Fletcher P., Lindgren W.F.: 
Quasi-uniform spaces. Lecture Notes in Pure and Applied Mathematics 77, Marcel Dekker inc., New York, 1982. 
MR 0660063 | 
Zbl 0583.54017[6] Gerritse G.: 
Lattice-valued Semicontinuous Functions. Report 8532, Catholic University of Nijmegen, 1985. 
Zbl 0872.54010[7] Gierz G., Hofmann K., Keimel K., Lawson J., Mislove M., Scott D.: 
A Compendium of Continuous Lattices. Springer-Verlag, Berlin, 1980. 
MR 0614752 | 
Zbl 0452.06001[8] van Gool F.A.: Non-linear Potential Theory. Preprint 606, University of Utrecht, 1990.
[9] Holwerda H.: Closed Hypographs, Semicontinuity and the Topological Closed-graph Theorem: A unifying Approach. Report 8935, Catholic University of Nijmegen, 1989.
[10] Katětov M.: 
On real-valued functions in topological spaces. Fundamenta Mathematicae 38 (1951), 85-91 Correction in Fund. Math. 40 (1953), 203-205. 
MR 0050264[12] Penot J.P., Théra M.: Semi-continuous mappings in general topology. Arch. Math. 38 (1982), 158-166.
[13] Tong H.: 
Some characterizations of normal and perfectly normal spaces. Duke Math. J. 19 (1952), 289-292. 
MR 0050265 | 
Zbl 0046.16203