Article
Keywords:
strong sequence; binary family; dyadic space; thick space
Summary:
One of the most important and well known theorem in the class of dyadic spaces is Esenin-Volpin's theorem of weight of dyadic spaces. The aim of this paper is to prove Esenin-Volpin's theorem in general form in class of thick spaces which possesses special subbases.
References:
                        
[1] Arhangelskii A.V.: 
Aproximatsia teorii diadicheskih bikompaktov (in Russian). DAN 184 (1969), 767-770. 
MR 0243485[3] Efimov B.A.: 
Diadicheskie bikompakty (in Russian). Trudy Mosk. Matem. O-va 14 (1965), 211-247. 
MR 0202105[4] DeGroot J.: Supercompactness and Superextensions. Symp. Berlin 1967, Deutscher Verlag Wiss., Berlin, 1969, pp.89-90.
[5] Kulpa W., Turzaṅski M.: 
Bijections into compact spaces. Acta Universitatis Carolinae - Mathematica and Physica 29 (1988), 43-49. 
MR 0983450[6] Mrȯwka S.: 
Mazur theorem and $m$-acid spaces. Bull. Acad. Polon. Sci. 43 (1970), 299-305. 
MR 0264613[7] Szymaṅski A., Turzaṅski M.: 
Subbase characterization of special spaces. Colloquium Mathematicum XLVII (1982), 185-197. 
MR 0713140[8] Turzaṅski M.: 
On generalizations of dyadic spaces. Acta Universitatis Carolinae - Mathematica et Physica 30 (1989), 153-159. 
MR 1046462[9] Turzaṅski M.: 
Strong sequences and the weight of regular spaces. Comment. Math. Univ. Carolinae 33 (1992), 557-561. 
MR 1209297