Previous |  Up |  Next

Article

Keywords:
strong sequence; binary family; dyadic space; thick space
Summary:
One of the most important and well known theorem in the class of dyadic spaces is Esenin-Volpin's theorem of weight of dyadic spaces. The aim of this paper is to prove Esenin-Volpin's theorem in general form in class of thick spaces which possesses special subbases.
References:
[1] Arhangelskii A.V.: Aproximatsia teorii diadicheskih bikompaktov (in Russian). DAN 184 (1969), 767-770. MR 0243485
[2] Bell M.G.: Generalized dyadic spaces. Fundamenta Mathematicae CXXV (1985), 47-58. MR 0813988 | Zbl 0589.54019
[3] Efimov B.A.: Diadicheskie bikompakty (in Russian). Trudy Mosk. Matem. O-va 14 (1965), 211-247. MR 0202105
[4] DeGroot J.: Supercompactness and Superextensions. Symp. Berlin 1967, Deutscher Verlag Wiss., Berlin, 1969, pp.89-90.
[5] Kulpa W., Turzaṅski M.: Bijections into compact spaces. Acta Universitatis Carolinae - Mathematica and Physica 29 (1988), 43-49. MR 0983450
[6] Mrȯwka S.: Mazur theorem and $m$-acid spaces. Bull. Acad. Polon. Sci. 43 (1970), 299-305. MR 0264613
[7] Szymaṅski A., Turzaṅski M.: Subbase characterization of special spaces. Colloquium Mathematicum XLVII (1982), 185-197. MR 0713140
[8] Turzaṅski M.: On generalizations of dyadic spaces. Acta Universitatis Carolinae - Mathematica et Physica 30 (1989), 153-159. MR 1046462
[9] Turzaṅski M.: Strong sequences and the weight of regular spaces. Comment. Math. Univ. Carolinae 33 (1992), 557-561. MR 1209297
Partner of
EuDML logo