Previous |  Up |  Next

Article

Title: The product of distributions on $R^m$ (English)
Author: Lin-Zhi, Cheng
Author: Fisher, Brian
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 33
Issue: 4
Year: 1992
Pages: 605-614
.
Category: math
.
Summary: The fixed infinitely differentiable function $\rho (x)$ is such that $\{n\rho (n x)\}$ is a re\-gular sequence converging to the Dirac delta function $\delta $. The function $\delta _{\bold n}(\bold x)$, with $\bold x=(x_1, \dots , x_m)$ is defined by $$ \delta _{\bold n}(\bold x)=n_1 \rho (n_1 x_1)\dots n_m \rho (n_m x_m). $$ The product $f \circ g$ of two distributions $f$ and $g$ in $\mathcal D'_m$ is the distribution $h$ defined by $$ \operatornamewithlimits{N\mbox{--}\lim}\limits _{n_1\rightarrow \infty } \dots \operatornamewithlimits{N\mbox{--}\lim}\limits _{n_m\rightarrow \infty } \langle f_{\bold n} g_{\bold n}, \phi \rangle = \langle h, \phi \rangle, $$ provided this neutrix limit exists for all $\phi (\bold x)=\phi _1(x_1)\dots \phi _m(x_m)$, where $f_{\bold n}=f \ast \delta _{\bold n}$ and $g_{\bold n}=g\ast \delta _{\bold n}$. (English)
Keyword: distribution
Keyword: neutrix limit
Keyword: neutrix product
MSC: 46F10
idZBL: Zbl 0818.46035
idMR: MR1240181
.
Date available: 2009-01-08T17:58:53Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118531
.
Reference: [1] Cheng L.Z., Fisher B.: Several products of distributions on $R^m$.Proc. R. Soc. Lond. A 426 (1989), 425-439. MR 1030468
Reference: [2] van der Corput J.G.: Introduction to the neutrix calculus.J. Analyse Math. 7 (1959-60), 291-398. Zbl 0097.10503, MR 0124678
Reference: [3] Fisher B.: The product of distributions.Quart. J. Math. (2) 22 (1971), 291-298. Zbl 0213.13104, MR 0287308
Reference: [4] Fisher B.: The product of the distributions $x_+^{-r-1/2}$ and $x_-^{-r-1/2}$.Proc. Camb. Phil. Soc. 71 (1972), 123-130. Zbl 0239.46031, MR 0296690
Reference: [5] Fisher B.: The neutrix distribution product $x_+^{-r}\delta ^{(r-1)}(x)$.Studia Sci. Math. Hungar. 9 (1974), 439-441. MR 0412805
Reference: [6] Fisher B., Li C.K.: On the product of distributions in $m$ variables.Jiangsu Coll. Jnl. 11 (1990), 1-10. MR 1069541
Reference: [7] Schwartz L.: Théorie des distributions.Vol. I, II, Herman, 1957. Zbl 0962.46025, MR 0107812
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_33-1992-4_5.pdf 212.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo