Previous |  Up |  Next

Article

Title: On binary coproducts of frames (English)
Author: Chen, Xiangdong
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 33
Issue: 4
Year: 1992
Pages: 699-712
.
Category: math
.
Summary: The structure of binary coproducts in the category of frames is analyzed, and the results are then applied widely in the study of compactness, local compactness (continuous frames), separatedness, pushouts and closed frame homomorphisms. (English)
Keyword: frame
Keyword: binary coproduct
Keyword: pushout
Keyword: compactness
Keyword: separatedness
Keyword: continuous frame
Keyword: closed homomorphism
Keyword: $D(\kappa)$-frame
MSC: 06A15
MSC: 06A23
MSC: 18A20
MSC: 18A30
MSC: 54C10
MSC: 54D10
MSC: 54D30
MSC: 54D45
idZBL: Zbl 0824.54004
idMR: MR1240192
.
Date available: 2009-01-08T18:00:01Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118542
.
Reference: [1] Banaschewski B.: Bourbaki's fixpoint lemma reconsidered.Comment. Math. Univ. Carolinae 33 (1992), 303-309. Zbl 0779.06004, MR 1189661
Reference: [2] Banaschewski B.: On pushing out frames.Comment. Math. Univ. Carolinae 31 (1990), 13-21. Zbl 0706.18003, MR 1056165
Reference: [3] Banaschewski B.: Compactification of frames.Math. Nachr. 149 (1990), 105-116. Zbl 0722.54018, MR 1124796
Reference: [4] Banaschewski B.: Another look at the localic Tychonoff theorem.Comment. Math. Univ. Carolinae 26 (1985), 619-630. MR 0982782
Reference: [5] Bourbaki N.: Elements of Mathematics: General Topology.Reading, Mass.: Addison-Wesley, 1966. Zbl 1107.54001
Reference: [6] Chen X.: Closed Frame Homomorphisms.Doctoral Dissertation, McMaster University, 1991. Zbl 0858.54012
Reference: [7] Dowker C.H., Papert D.: Paracompact frames and closed maps.Symp. Math. 16 (1975), 93-116. Zbl 0324.54015, MR 0410663
Reference: [8] Dowker C.H., Strauss D.: Separation axioms for frames.Colloq. Math. Soc. János Bolyai 8 (1972), 223-240. MR 0394559
Reference: [9] Isbell J.R.: Atomless parts of spaces.Math. Scand. 31 (1972), 5-32. Zbl 0246.54028, MR 0358725
Reference: [10] Johnstone P.T.: Stone Space.Cambridge University Press, 1982. MR 0698074
Reference: [11] Kříž I., Pultr A.: Peculiar behaviour of connected locales.Cahiers de Top. et Géom. Diff. Cat. XXX-1 (1989), 25-43. MR 1000829
Reference: [12] Pultr A., Tozzi A.: Notes on Kuratowski-Mrówka theorems in point-free context.Cahiers de Top. et Géom. Diff. Cat. XXXIII-1 (1992), 3-14. Zbl 0772.54016, MR 1163423
Reference: [13] Vermeulen J.J.C.: Some constructive results related to compactness and the (strong) Hausdorff property for locales.Category Theory, Proceedings, Como 1990, Springer LNM 1488 (1991), 401-409. Zbl 0739.18001, MR 1173026
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_33-1992-4_16.pdf 245.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo