Article
Keywords:
CW-complex; oriented vector bundle; characteristic classes; Postnikov tower
Summary:
Necessary and sufficient conditions for the existence of $n$-dimensional oriented vector bundles ($n=3,4,5$) over CW-complexes of dimension $\le 7$ with prescribed Stiefel-Whitney classes $w_2=0$, $w_4 $ and Pontrjagin class $p_1$ are found. As a consequence some results on the span of 6 and 7-dimensional oriented vector bundles are given in terms of characteristic classes.
References:
[1] Čadek M., Vanžura J.:
On the classification of oriented vector bundles over 5-complexes. preprint.
MR 1258434
[2] Dold A., Whitney H.:
Classification of oriented sphere bundles over a 4-complex. Ann. of Math. (1959), 69 667-677.
MR 0123331 |
Zbl 0124.38103
[3] James I., Thomas E.:
An approach to the enumeration problem for non-stable vector bundles. J. Math. Mech. (1965), 14 485-506.
MR 0175134 |
Zbl 0142.40701
[5] Tze-Beng Ng:
On the geometric dimension of vector bundles, span of manifold and immersion of manifolds in manifolds. Exposition. Math. (1990), 8 193-226.
MR 1062767
[6] Quillen D.:
The mod 2 cohomology rings of extra-special 2-groups and their spinor groups. Math. Ann. (1971), 194 197-212.
MR 0290401
[7] Thomas E.:
On the cohomology of the real Grassmann complexes. Trans. Amer. Math. Soc. (1960), 96 67-89.
MR 0121800 |
Zbl 0098.36301
[8] Thomas E.:
Homotopy classification of maps by cohomology homomorphisms. Trans. Amer. Math. Soc. (1964), 111 138-151.
MR 0160212 |
Zbl 0119.18401
[9] Thomas E.:
Seminar on fibre bundles. Lecture Notes in Math., no 13 Springer Berlin - Heidelberg - New York (1966).
MR 0203733
[10] Thomas E.:
Postnikov invariants and higher order cohomology operation. Ann. of Math. (1967), 85 184-217.
MR 0210135
[11] Thomas E.:
Real and complex vector fields on manifolds. J. Math. Mech. (1967), 16 1183-1206.
MR 0210136 |
Zbl 0153.53503
[12] Thomas E.:
Fields of $k$-planes on manifolds. Invent. Math. (1967), 3 334-347.
MR 0217814
[14] Woodward L.M.:
The classification of orientable vector bundles over CW-complexes of small dimension. Proc. Roy. Soc. Edinburgh (1982), 92A 175-179.
MR 0677482 |
Zbl 0505.55017