Previous |  Up |  Next

Article

Title: Dense chaos (English)
Author: Snoha, L'ubomír
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 33
Issue: 4
Year: 1992
Pages: 747-752
.
Category: math
.
Summary: According to A. Lasota, a continuous function $f$ from a real compact interval $I$ into itself is called generically chaotic if the set of all points $(x,y)$, for which $\liminf_{n\to\infty} |f^n(x)-f^n(y)|=0$ and $\limsup_{n\to\infty} |f^n(x)-f^n(y)|>0$, is residual in $I\times I$. Being inspired by this definition we say that $f$ is densely chaotic if this set is dense in $I\times I$. A characterization of the generically chaotic functions is known. In the paper the densely chaotic functions are characterized and it is proved that in the class of piecewise monotone maps with finite number of pieces the notion of dense chaos and that of generic chaos coincide. (English)
Keyword: dense chaos
Keyword: generic chaos
Keyword: piecewise monotone map
MSC: 26A18
MSC: 37D45
MSC: 54H20
MSC: 58F03
MSC: 58F13
idZBL: Zbl 0784.58043
idMR: MR1240197
.
Date available: 2009-01-08T18:00:27Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118547
.
Reference: [1] Piórek J.: On the generic chaos in dynamical systems.Acta Math. Univ. Iagell. 25 (1985), 293-298. MR 0837847
Reference: [2] Snoha L'.: Generic chaos.Comment. Math. Univ. Carolinae 31 (1990), 793-810. Zbl 0724.58044, MR 1091377
Reference: [3] Snoha L'.: Two-parameter chaos.preprint, 1992. Zbl 0799.58051, MR 1286993
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_33-1992-4_21.pdf 184.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo