Previous |  Up |  Next

Article

Title: Ostrowski-Kantorovich theorem and $S$-order of convergence of Halley method in Banach spaces (English)
Author: Chen, Dong
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 34
Issue: 1
Year: 1993
Pages: 153-163
.
Category: math
.
Summary: Ostrowski-Kantorovich theorem of Halley method for solving nonlinear operator equations in Banach spaces is presented. The complete expression of an upper bound for the method is given based on the initial information. Also some properties of $S$-order of convergence and sufficient asymptotic error bound will be discussed. (English)
Keyword: nonlinear operator equations
Keyword: Banach spaces
Keyword: Halley type method
Keyword: Ostrowski-Kantorovich convergence theorem
Keyword: Ostrowski-Kantorovich assumptions
Keyword: optimal error \linebreak bound
Keyword: $S$-order of convergence
Keyword: sufficient asymptotic error bound
MSC: 47H17
MSC: 47J25
MSC: 65H10
MSC: 65J15
idZBL: Zbl 0786.65051
idMR: MR1240213
.
Date available: 2009-01-08T18:01:57Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118565
.
Reference: [1] Dong Chen: On a New Definition of Order of Convergence in General Iterative Methods I: One Point Iterations.Research Report No. 7, Department of Mathematical Sciences, University of Arkansas, 1991.
Reference: [2] Dong Chen: On a New Definition of Order of Convergence in General Iterative Methods II: Multipoint Iterations.Research Report No. 8, Department of Mathematical Sciences, University of Arkansas, 1991.
Reference: [3] Kantorovich L.V., Akilov G.P.: Functional Analysis in Normed Spaces.Pergaman Press, New York, 1964. Zbl 0127.06104, MR 0213845
Reference: [4] Ostrowski A.M.: Solution of Equations in Euclidean and Banach Spaces.Academic Press, New York, 3rd ed., 1973. Zbl 0304.65002, MR 0359306
Reference: [5] Taylor A.E.: Introduction to Functional Analysis.Wiley, New York, 1957. Zbl 0654.46002, MR 0098966
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_34-1993-1_16.pdf 201.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo