Previous |  Up |  Next

Article

Title: On analyticity in cosmic spaces (English)
Author: Okunev, Oleg
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 34
Issue: 1
Year: 1993
Pages: 185-190
.
Category: math
.
Summary: We prove that a cosmic space (= a Tychonoff space with a countable network) is analytic if it is an image of a $K$-analytic space under a measurable mapping. We also obtain characterizations of analyticity and $\sigma $-compactness in cosmic spaces in terms of metrizable continuous images. As an application, we show that if $X$ is a separable metrizable space and $Y$ is its dense subspace then the space of restricted continuous functions $C_p(X\mid Y)$ is analytic iff it is a $K_{\sigma \delta }$-space iff $X$ is $\sigma $-compact. (English)
Keyword: measurable mapping
Keyword: cosmic space
Keyword: analyticity
Keyword: topology of pointwise convergence
MSC: 54C35
MSC: 54C50
MSC: 54E20
MSC: 54H05
idZBL: Zbl 0837.54009
idMR: MR1240216
.
Date available: 2009-01-08T18:02:18Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118568
.
Reference: [1] Arhangel'skiĭ A.V.: Some topological spaces that arise in functional analysis.Russ. Math. Surveys 31 (1976), 14-30. MR 0458366
Reference: [2] Arhangel'skiĭ A.V.: Factorization theorems and function spaces: stability and monolithicity.Soviet. Math. Doklady 26 (1982), 177-181.
Reference: [3] Arhangel'skiĭ A.V.: Hurewicz spaces, analytic sets, and fan tightness of function spaces.Soviet. Math. Doklady 33 (1986), 396-399.
Reference: [4] Christensen J.P.R.: Topology and Borel Structure.North Holland, Amsterdam, 1974. Zbl 0273.28001, MR 0348724
Reference: [5] Frolík Z.: A measurable map with analytic domain and metrizable range is quotient.Bull. Amer. Math. Soc. 76 (1970), 1112-1117. MR 0265539
Reference: [6] Kuratowski K.: Topology.Vol. 1, Academic Press, N.Y.-London, 1966. Zbl 0849.01044, MR 0217751
Reference: [7] Motorov D.B.: Metrizable images of the arrow (Sorgenfrey line).Moscow Univ. Math. Bull. 39 (1984), 48-50. MR 0741159
Reference: [8] Okunev O.: On analyticity in non-metrizable spaces.Abstracts of the VII Prague Topol. Symp., p. 101.
Reference: [9] Rogers C.A., Jayne J.E., and al.: Analytic Sets.Academic Press, London, 1980.
Reference: [10] Talagrand M.: A new countably determined Banach space.Israel J. Math. 47 (1984), 75-80. Zbl 0537.46019, MR 0736065
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_34-1993-1_19.pdf 184.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo