Previous |  Up |  Next

Article

Title: On a class of commutative groupoids determined by their associativity triples (English)
Author: Drápal, Aleš
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 34
Issue: 2
Year: 1993
Pages: 199-201
.
Category: math
.
Summary: Let $G = G(\cdot)$ be a commutative groupoid such that $\{(a,b,c) \in G^3$; $a\cdot bc \ne ab\cdot c\} = \{(a,b,c) \in G^3$; $a=b\ne c$ or $ a \ne b =c \}$. Then $G$ is determined uniquely up to isomorphism and if it is finite, then $\operatorname{card}(G) = 2^i$ for an integer $i\ge 0$. (English)
Keyword: commutative groupoid
Keyword: associative triples
MSC: 05B15
MSC: 05E99
MSC: 20L05
MSC: 20N02
idZBL: Zbl 0787.20040
idMR: MR1241727
.
Date available: 2009-01-08T18:02:28Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118571
.
Reference: [1] Drápal A., Kepka T.: Sets of associative triples.Europ. J. Combinatorics 6 (1985), 227-231. MR 0818596
Reference: [2] Drápal A.: Groupoids with non-associative triples on the diagonal.Czech. Math. Journal 35 (1985), 555-564. MR 0809042
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_34-1993-2_1.pdf 152.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo