Article
Keywords:
locally convex space; $\text{\rm H}$-locally convex space; numerical range; spectrum
Summary:
The spatial numerical range for a class of operators on locally convex space was studied by Giles, Joseph, Koehler and Sims in [3]. The purpose of this paper is to consider some additional properties of the numerical range on locally convex and especially on $\text{\rm H}$-locally convex spaces.
References:
                        
[1] Bonsal F.F., Duncan J.: 
Numerical range of operators on normed spaces and of elements of normed algebras. London Math. Soc. Lecture Note Series 2, Cambridge, 1971. 
MR 0288583[2] Bonsal F.F., Duncan J.: 
Numerical ranges II. London Math. Soc. Lecture Note Series 10, Cambridge, 1973. 
MR 0442682[3] Giles J.R., Joseph G., Koehler D.O., Sims B.: 
On numerical ranges of operators on locally convex spaces. J. Austral. Math. Soc. 20 (1975), 468-482. 
MR 0385598 | 
Zbl 0312.47002[4] Hildebrandt S.: 
Über den numerischen Werterbereich eines Operators. Math. Annalen 163 (1966), 230-247. 
MR 0200725[5] Joseph G.A.: 
Boundedness and completeness in locally convex spaces and algebras. J. Austral. Math. Soc. 24 (1977), 50-63. 
MR 0512300 | 
Zbl 0367.46045[6] Kramar E.: 
Locally convex topological vector spaces with Hilbertian seminorms. Rev. Roum. Math. pures et Appl. 26 (1981), 55-62. 
MR 0616022 | 
Zbl 0457.46001[8] Precupanu T.: 
Sur les produits scalaires dans des espaces vectoriels topologiques. ibid. 13 (1968), 83-93. 
MR 0235398 | 
Zbl 0155.45201