Previous |  Up |  Next

Article

Title: Global in time solvability of the initial boundary value problem for some nonlinear dissipative evolution equations (English)
Author: Shibata, Yoshihiro
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 34
Issue: 2
Year: 1993
Pages: 295-312
.
Category: math
.
Summary: The global in time solvability of the one-dimensional nonlinear equations of thermoelasticity, equations of viscoelasticity and nonlinear wave equations in several space dimensions with some boundary dissipation is discussed. The blow up of the solutions which might be possible even for small data is excluded by allowing for a certain dissipative mechanism. (English)
Keyword: nonlinear thermoelasticity
Keyword: viscoelasticity
Keyword: nonlinear wave equation
Keyword: global solutions
MSC: 35L20
MSC: 35L70
MSC: 73B30
MSC: 73F15
MSC: 73F99
MSC: 74D99
idZBL: Zbl 0805.35077
idMR: MR1241738
.
Date available: 2009-01-08T18:03:30Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118582
.
Reference: [1] Agmon S.: On the eigenfunctions and on the eigenvalues of general elliptic boundary value problems.Commun. Pure Appl. Math. 15 (1962), 119-147. Zbl 0109.32701, MR 0147774
Reference: [2] Agmon S., Douglis A., Nirenberg L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I.Commun. Pure Appl. Math. 12 (1959), 623-727; II, ibid. 17 (1964), 35-92. Zbl 0093.10401, MR 0125307
Reference: [3] Andrews G.: On the existence of solutions to the equation: $u_{tt} = u_{xxt} + \sigma(u_x)_x$.J. Diff. Eqns. 35 (1980), 200-231. Zbl 0415.35018, MR 0561978
Reference: [4] Andrews G., Ball J.M.: Asymptotic behaviour and changes in phase in one-dimensional nonlinear viscoelasticity.J. Diff. Eqns. 44 (1982), 306-341. MR 0657784
Reference: [5] Ang D.D., Dinh A.P.N.: On the strongly damped wave equation: $u_{tt} - \Delta u - \Delta u_t + f(u) = 0$.SIAM J. Math. Anal. 19 (1988), 1409-1418. MR 0965260
Reference: [6] Aviles P., Sandefur J.: Nonlinear second order equations with applications to partial differential equations.J. Diff. Eqns. 58 (1985), 404-427. Zbl 0572.34004, MR 0797319
Reference: [7] Bardos C., Lebeau G., Rauch J: Contrôle et stabilisation dans les problèmes hyperboliques.Appendix II in J.L. Lions Contrôlabilité exacte, perturbations et stabilisation de systémes distribués, I, Contrôlabilité exacte Masson, RMA 8, 1988. MR 0953547
Reference: [8] Bardos C., Lebeau G., Rauch J: Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary.submitted to SIAM. J. Cont. Optim. Zbl 0786.93009
Reference: [9] Chen G.: Energy decay estimates and exact boundary value controllability for the wave equation in a bounded domain.J. Math. pures et appl. 58 (1976), 249-273. MR 0544253
Reference: [10] Chrzȩszczyk A.: Some existence results in dynamical thermoelasticity. Part I. Nonlinear Case.Arch. Mech. 39 (1987), 605-617. MR 0976929
Reference: [11] Cleménts J.: Existence theorems for a quasilinear evolution equation.SIAM J. Appl. Math. 26 (1974), 745-752. MR 0372426
Reference: [12] Cleménts J.: On the existence and uniqueness of solutions of the equation $u_{tt} - (\partial/\partial x_i)\sigma_i(u_{x_i}) - \Delta_Nu_t = f$.Canad. Math. Bull. 18 (1975), 181-187. MR 0397200
Reference: [13] Dafermos C.M.: On the existence and the asymptotic stability of solutions to the equations of linear thermoelasticity.Arch. Rational Mech. Anal. 29 (1968), 241-271. Zbl 0183.37701, MR 0233539
Reference: [14] Dafermos C.M.: The mixed initial-boundary value problem for the equations of non-linear one-dimensional visco-elasticity.J. Diff. Eqns. 6 (l969), 71-86. MR 0241831
Reference: [15] Dafermos C.M., Hsiao L.: Development of singularities in solutions of the equations of nonlinear thermoelasticity.Quart. Appl. Math. 44 (1986), 463-474. Zbl 0661.35009, MR 0860899
Reference: [16] Dan W.: On a local in time solvability of the Neumann problem of quasilinear hyperbolic parabolic coupled systems.preprint, 1992. Zbl 0841.35003, MR 1357364
Reference: [17] Dassios G., Grillakis M.: Dissipation rates and partition of energy in thermoelasticity.Arch. Rational Mech. Anal. 87 (1984), 49-91. Zbl 0563.73007, MR 0760319
Reference: [18] Ebihara Y.: On some nonlinear evolution equations with the strong dissipation.J. Diff. Eqns. 30 (1978), 149-164 II ibid. 34 (1979), 339-352 III ibid. 45 (1982), 332-355. MR 0513267
Reference: [19] Ebihara Y.: Some evolution equations with the quasi-linear strong dissipation.J. Math. pures et appl. 58 (1987), 229-245. MR 0539221
Reference: [20] Engler H.: Strong solutions for strongly damped quasilinear wave equations.Contemporary Math. 64 (1987), 219-237. Zbl 0638.35054, MR 0881465
Reference: [21] Feireisl E.: Forced vibrations in one-dimensional nonlinear thermoelasticity as a local coercive-like problem.Comment. Math. Univ. Carolinae 31 (1990), 243-255. Zbl 0718.73013, MR 1077895
Reference: [22] Friedman A., Nečas J.: Systems of nonlinear wave equations with nonlinear viscosity.Pacific J. Math. 135 (1988), 29-55. MR 0965683
Reference: [23] Greenberg J.M.: On the existence, uniqueness, and stability of the equation $\rho_0X_{tt} = E(X_x)X_{xx} + X_{xxt}$.J. Math. Anal. Appl. 25 (1969), 575-591. MR 0240473
Reference: [24] Greenberg J.M., Li Ta-tsien: The effect of boundary damping for the quasilinear wave equation.J. Diff. Eqns. 52 (1984), 66-75. MR 0737964
Reference: [25] Greenberg J.M., MacCamy R.C., Mizel J.J.: On the existence, uniqueness, and stability of the equation $\sigma^{\prime} (u_x)u_{xx} - \lambda u_{xxt} = \rho_0u_{tt}$.J. Math. Mech. 17 (1968), 707-728.
Reference: [26] Godin P.: Private communication in 1992..
Reference: [27] Hrusa W.J., Messaoudi S.A.: On formation of singularities in one-dimensional nonlinear thermoelasticity.Arch. Rational Mech. Anal. 111 (1990), 135-151. Zbl 0712.73023, MR 1057652
Reference: [28] Hrusa W.J., Tarabek M.A.: On smooth solutions of the Cauchy problem in one-dimensional nonlinear thermoelasticity.Quart. Appl. Math. 47 (1989), 631-644. Zbl 0692.73005, MR 1031681
Reference: [29] Jiang S.: Global existence of smooth solutions in one- dimensional nonlinear thermoelasticity.Proc. Roy. Soc. Edinburgh 115A (1990), 257-274. Zbl 0723.35044, MR 1069521
Reference: [30] Jiang S.: Far field behavior of solutions to the equations of nonlinear 1-d-thermoelasticity.Appl. Anal. 36 (1990), 25-35. Zbl 0672.35011, MR 1040876
Reference: [31] Jiang S.: Rapidly decreasing behaviour of solutions in nonlinear 3-D-thermo-elasticity.Bull. Austral. Math. Soc. 43 (1991), 89-99. MR 1086721
Reference: [32] Jiang S.: Global solutions of the Dirichlet problem in one-dimensional nonlinear thermoelasticity.SFB 256 Preprint 138, Universität Bonn, 1990.
Reference: [33] Jiang S.: Global solutions of the Neumann problem in one-dimensional nonlinear thermoelasticity.to appear in Nonlinear TMA. Zbl 0786.73009, MR 1174462
Reference: [34] Jiang S., Racke R.: On some quasilinear hyperbolic-parabolic initial boundary value problems.Math. Meth. Appl. Sci. 12 (1990), 315-339. Zbl 0706.35098, MR 1048561
Reference: [35] Kawashima S.: Systems of a hyperbolic-parabolic composite type, with applications to the equations of magnetohydrodynamics.Thesis, Kyoto University, 1983.
Reference: [36] Kawashima S., Okada M.: Smooth global solutions for the one-dimensional equations in magnetohydrodynamics.Proc. Japan Acad. Ser. A. 53 (1982), 384-387. Zbl 0522.76098, MR 0694940
Reference: [37] Kawashima S., Shibata Y.: Global existence and exponential stability of small solutions to nonlinear viscoelasticity.to appear in Commun. Math. Phys. Zbl 0779.35066, MR 1178142
Reference: [38] Kawashima S., Shibata Y.: On the Neumann problem of one-dimensional nonlinear thermoelasticity with time- independent external forces.preprint, 1992. MR 1314530
Reference: [39] Klainerman S., Majda A.: Formation of singularities for wave equations including the nonlinear vibrating string.Pure Appl. Math. 33 (1980), 241-263. Zbl 0443.35040, MR 0562736
Reference: [40] Kobayashi T., Pecher H., Shibata Y.: On a global in time existence theorem of smooth solutions to a nonlinear wave equation with viscosity.preprint, 1992. Zbl 0788.35001, MR 1219900
Reference: [41] Lagnese J.: Boundary stabilization of linear elastodynamic systems.SIAM J. Control Optim. 21 (1983), 968-984. Zbl 0531.93044, MR 0719524
Reference: [42] MacCamy R.C., Mizel V.J.: Existence and nonexistence in the large of solutions of quasilinear wave equations.Arch. Rational Mech. Anal. 25 (1967), 299-320. Zbl 0146.33801, MR 0216165
Reference: [43] Matsumura A.: Global existence and asymptotics of the solutions of the second-order quasilinear hyperbolic equations with first order dissipation.Publ. RIMS Kyoto Univ. Ser. A 13 (1977), 349-379. MR 0470507
Reference: [44] Mizohata K., Ukai S.: The global existence of small amplitude solutions to the nonlinear acoustic wave equation.preprint, 1991, Dep. of Information Sci. Tokyo Inst. of Tech. Zbl 0794.35108, MR 1231754
Reference: [45] Nagasawa T.: On the one-dimensional motion of the polytropic ideal gas non-fixed on the boundary.J. Diff. Eqns. 65 (1986), 49-67. Zbl 0598.34021, MR 0859472
Reference: [46] Pecher H.: On global regular solutions of third order partial differential equations.J. Math. Anal. Appl. 73 (1980), 278-299. Zbl 0429.35057, MR 0560948
Reference: [47] Ponce G.: Global existence of small solutions to a class of nonlinear evolution equation.Nonlinear Anal. TMA 9 (1985), 399-418. MR 0785713
Reference: [48] Ponce G., Racke R.: Global existence of small solutions to the initial value problem for nonlinear thermoelasticity.J. Diff. Eqns. 87 (1990), 70-83. Zbl 0725.35065, MR 1070028
Reference: [49] Potier-Ferry M.: On the mathematical foundation of elastic stability, I.Arch. Rational Mech. Anal. 78 (1982), 55-72. MR 0654552
Reference: [50] Qin T.: The global smooth solutions of second order quasilinear hyperbolic equations with dissipation boundary condition.Chinese Anals Math. 9B (1988), 251-269. MR 0968461
Reference: [51] Quinn J.P., Russell D.L.: Asymptotic stability and energy decay rates for solutions of hyperbolic equations with boundary damping.Proc. Roy. Soc. Edinburgh 77A (1977), 97-127. Zbl 0357.35006, MR 0473539
Reference: [52] Rabinowitz P.: Periodic solutions of nonlinear partial differential equations.Commun. Pure Appl. Math. 20 (1967), 145-205 II ibid. 22 (1969), 15-39. MR 0206507
Reference: [53] Racke R.: On the Cauchy problem in nonlinear 3-d-thermoelasticity.Math. Z. 203 (1990), 649-682. Zbl 0701.73002, MR 1044071
Reference: [54] Racke R.: Blow-up in nonlinear three-dimensional thermoelasticity.Math. Meth. Appl. Sci. 12 (1990), 267-273. Zbl 0705.35081, MR 1043758
Reference: [55] Racke R.: Mathematical aspects in nonlinear thermoelasticity.SFB 256 Lecture Note Series { 25}, 1992.
Reference: [56] Racke R.: Lectures on nonlinear evolution equation. Initial value problems.Ser. ``Aspects of Mathematics'', Fridr. Vieweg & Sohn, Braunschweig/Wiesbaden, 1992. MR 1158463
Reference: [57] Racke R., Shibata Y.: Global smooth solutions and asymptotic stability in one-dimensional nonlinear thermoelasticity.Arch. Rational Mech. Anal. 116 (1991), 1-34. Zbl 0756.73012, MR 1130241
Reference: [58] Racke R., Shibata Y., Zheng S.: Global solvability and exponential stability in one-dimensional nonlinear thermoelasticity.to appear in Quart. Appl. Math. Zbl 0804.35132, MR 1247439
Reference: [59] Rybka P.: Dynamical modelling of phase transitions by means of viscoelasticity in many dimensions.to appear in Proc. Roy. Soc. Edinburgh 121A (1992). Zbl 0758.73004, MR 1169897
Reference: [60] Shibata Y.: Neumann problem for one-dimensional nonlinear thermoelasticity.to appear in Banach Center Publication. MR 1205848
Reference: [61] Shibata Y, Nakamura G.: On a local existence theorem of Neumann problem for some quasilinear hyperbolic systems of 2nd order.Math. Z. 202 (1989), 1-64. MR 1007739
Reference: [62] Shibata Y., Kikuchi M.: On the mixed problem for some quasilinear hyperbolic system with fully nonlinear boundary condition.J. Diff. Eqns. 80 (1989), 154-197. Zbl 0689.35055, MR 1003254
Reference: [63] Shibata Y., Zheng S.: On some nonlinear hyperbolic systems with damping boundary conditions.Nonlinear Anal. TMA 17 (1991), 233-266. Zbl 0772.35031, MR 1120976
Reference: [64] Slemrod M.: Global existence, uniqueness, and asymptotic stability of classical smooth solutions in the one-dimensional non-linear thermoelasticity.Arch. Rational Mech. Anal. 76 (1981), 97-133. MR 0629700
Reference: [65] Tanabe H.: Equations of evolution.Monographs and Studies in Mathematics, Pitman, London, San Francisco, Melbourne, l979. Zbl 0417.35003
Reference: [66] Webb G.F.: Existence and asymptotic behavior for a strongly damped nonlinear wave equation.Canada J. Math. 32 (1980), 631-643. Zbl 0414.35046, MR 0586981
Reference: [67] Yamada Y.: Some remarks on the equation $u_{tt} - \sigma(y_x)y_{xx} -y_{xtx} = f$.Osaka J. Math. 17 (1980), 303-323. MR 0587752
Reference: [68] Zheng S.: Global solutions and applications to a class of quasilinear hyperbolic-parabolic coupled systems.Sci. Sinica Ser. A 27 (1984), 1274-1286. Zbl 0581.35056, MR 0794293
Reference: [69] Zheng S., Shen W.: Global solutions to the Cauchy problem of quasilinear hyperbolic parabolic coupled systems.Sci. Sinica Ser. A 3 (1987), 1133-1149. Zbl 0649.35013, MR 0942420
Reference: [70] Zuazua E.: Stability and decay for a class of nonlinear hyperbolic problems.Asymptotic Anal. 1 (1988), 161-185. Zbl 0677.35069, MR 0950012
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_34-1993-2_12.pdf 281.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo