Previous |  Up |  Next

Article

Title: Relatively realcompact sets and nearly pseudocompact spaces (English)
Author: Schommer, John J.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 34
Issue: 2
Year: 1993
Pages: 375-382
.
Category: math
.
Summary: A space is said to be nearly pseudocompact iff $vX-X$ is dense in $\beta X-X$. In this paper relatively realcompact sets are defined, and it is shown that a space is nearly pseudocompact iff every relatively realcompact open set is relatively compact. Other equivalences of nearly pseudocompactness are obtained and compared to some results of Blair and van Douwen. (English)
Keyword: nearly pseudocompact
Keyword: nearly realcompact
Keyword: $G_\delta $-relatively realcompact
Keyword: relatively realcompact
Keyword: relatively pseudocompact
Keyword: relatively compact
Keyword: nowhere locally compact
MSC: 54C45
MSC: 54D30
MSC: 54D35
MSC: 54D45
MSC: 54D60
MSC: 54D99
idZBL: Zbl 0781.54019
idMR: MR1241747
.
Date available: 2009-01-08T18:04:18Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118591
.
Reference: [1] Blair R.: On $v$-embedded sets in topological spaces.in ``TOPO 72 - General Topology and its Applications'', Second Pittsburg International Conference, December 18-22, 1972, Lecture Notes in Math., Springer-Verlag, Berlin-Heidelberg-New York, 1974, pp. 46-79. MR 0358677
Reference: [2] Blair R.: Spaces in which special sets are $z$-embedded.Canadian Journal of Math. 28 (1976), 673-690. Zbl 0359.54009, MR 0420542
Reference: [3] Blair R., van Douwen E.: Nearly realcompact spaces.Topology Appl. 47, (1992), 209-221. Zbl 0772.54021, MR 1192310
Reference: [4] Blair R., Swardson M.A.: Spaces with an Oz Stone-Čech compactification.Topology Appl. 36 (1990), 73-92. Zbl 0721.54018, MR 1062186
Reference: [5] Engelking R.: General Topology.Heldermann Verlag, Berlin, 1989. Zbl 0684.54001, MR 1039321
Reference: [6] Gillman L., Jerison M.: Rings of Continuous Functions.University Series in Higher Math., Van Nostrand, Princeton, 1960. Zbl 0327.46040, MR 0116199
Reference: [7] Henriksen M., Rayburn M.: On nearly pseudocompact spaces.Topology Appl. 11 (1980), 161-172. Zbl 0419.54009, MR 0572371
Reference: [8] Mrówka S.: Functionals on uniformly closed rings of continuous functions.Fund. Math. 46 (1958), 81-87. MR 0100217
Reference: [9] Negrepontis S.: Baire sets in topological spaces.Arch. Math. 18 (1967), 603-608. Zbl 0152.39703, MR 0220248
Reference: [10] Rayburn M.: On hard sets.Topology Appl. 6 (1976), 21-26. Zbl 0323.54022, MR 0394577
Reference: [11] Weir M.: Hewitt-Nachbin Spaces.North-Holland Math. Studies 17, North-Holland and American Elsevier, Amsterdam and New York, 1975. Zbl 0314.54002, MR 0514909
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_34-1993-2_21.pdf 199.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo