Article
Keywords:
uniform space; uniform weight; fine uniformity; uniformly locally finite; $\omega _\mu $-additive space; $\omega _\mu $-metric space
Summary:
Let $X$ be a uniform space of uniform weight $\mu$. It is shown that if every open covering, of power at most $\mu$, is uniform, then $X$ is fine. Furthermore, an $\omega _\mu $-metric space is fine, provided that every finite open covering is uniform.
References:
[1] Artico G. and Moresco R.:
$\;ømega_\mu$-additive topological spaces. Rend. Sem. Mat. Univ. Padova 67 (1982), 131-141.
MR 0682706
[2] Atsuji M.:
Uniform continuity of continuous functions of metric spaces. Pacific J. Math. 8 (1958), 11-16.
MR 0099023 |
Zbl 0082.16207
[3] Di Concilio A., Naimpally S.A.:
Uniform continuity in sequentially uniform spaces. Acta Mathematica Hungarica 61 3-4 (1993 \toappear).
MR 1200953 |
Zbl 0819.54014
[5] Isbell J.R.:
Uniform Spaces. Mathematical Surveys nr 12 AMS Providence, Rhode Island (1964).
MR 0170323 |
Zbl 0124.15601
[6] Isiwata T.: On uniform continuity of $C(X)$ (Japanese). Sugaku Kenkiu Roku of Tokyo Kyoiku Daigaku 2 (1955), 36-45.
[7] Marconi U.:
On the uniform paracompactness. Rend. Sem. Mat. Univ. Padova 72 (1984), 101-105.
MR 0778348 |
Zbl 0566.54013
[8] Marconi U.:
On uniform paracompactness of the $\;ømega_\mu$-metric spaces. Rend. Accad. Naz. Lincei 75 (1983), 102-105.
MR 0780810
[10] Rainwater J.:
Spaces whose finest uniformity is metric. Pacific J. Math. 9 (1959), 567-570.
MR 0106448 |
Zbl 0088.38301